Wednesday, February 18

The adoption and efficacy of large language models in US consumer financial complaints


  • Liang, W. et al. Monitoring AI-modified content at scale: a case study on the impact of ChatGPT on AI conference peer reviews. In International Conference on Machine Learning (eds Salakhutdinov, R. et al.) 29575–29620 (PMLR, 2024).

  • Liang, W., Zhang, Y., Wu, Z. et al. Quantifying large language model usage in scientific papers. Nat. Hum. Behav. 9, 2599–2609 (2025); https://doi.org/10.1038/s41562-025-02273-8

  • Liang, W. et al. The widespread adoption of large language model-assisted writing across society. Patterns 6, 101366 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ling, Y., Kale, A. & Imas, A. Underreporting of AI use: the role of social desirability bias. SSRN Working Paper https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5464215 (2025).

  • Humlum, A. & Vestergaard, E. The unequal adoption of ChatGPT exacerbates existing inequalities among workers. Proc. Natl Acad. Sci. USA 122, e2414972121 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Park, E. & Gelles-Watnick, R. Most Americans Haven’t Used ChatGPT; Few Think It Will Have a Major Impact on Their Job (Pew Research Center, 2023); https://pewrsr.ch/3SCeWX9

  • McClain, C. Americans’ Use of ChatGPT Is Ticking Up, but Few Trust Its Election Information (Pew Research Center, 2024); https://shorturl.at/nn49B

  • Bick, A., Blandin, A. & Deming, D. J. The Rapid Adoption of Generative AI Working Paper No. 32966 (National Bureau of Economic Research, 2024); http://www.nber.org/papers/w32966

  • Wu, Y. et al. Autoformalization with large language models. Adv. Neural Inf. Process. Syst. 35, 32353–32368 (2022).


    Google Scholar
     

  • Saito, K., Wachi, A., Wataoka, K. & Akimoto, Y. Verbosity bias in preference labeling by large language models. Preprint at https://arxiv.org/abs/2310.10076 (2023).

  • Shahriar, S. & Hayawi, K. Let’s have a chat! A conversation with ChatGPT: technology, applications, and limitations. Artif. Intell. Appl. 2, 11–20 (2024).


    Google Scholar
     

  • Lusardi, A. & Mitchell, O. S. The economic importance of financial literacy: theory and evidence. J. Econ. Lit. 52, 5–44 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fernandes, D., Lynch Jr, J. G. & Netemeyer, R. G. Financial literacy, financial education, and downstream financial behaviors. Manage. Sci. 60, 1861–1883 (2014).

    Article 

    Google Scholar
     

  • Russo, G., Horta Ribeiro, M., Davidson, T. R., Veselovsky, V. & West, R. The AI review lottery: widespread AI-assisted peer reviews boost paper scores and acceptance rates. Proc. ACM Hum.-Comput. Interact. (ed. Nichols, J.) 9, CSCW486 (2025).

  • Kadoma, K. et al. The role of inclusion, control, and ownership in workplace AI-mediated communication. In Proc. 2024 CHI Conf. Hum. Factors Comput. Syst. (eds Mueller, F. F. et al.) 1016 (2024).

  • Wiles, E. & Horton, J. J. Generative AI and labor market matching efficiency. SSRN Working Paper https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5187344 (2025).

  • Wester, J., De Jong, S., Pohl, H. & Van Berkel, N. Exploring people’s perceptions of LLM-generated advice. Comput. Hum. Behav. Artif. Hum. 2, 100072 (2024).

    Article 

    Google Scholar
     

  • Kadoma, K., Metaxa, D. & Naaman, M. Generative AI and perceptual harms: who’s suspected of using LLMs? In Proc. 2025 CHI Conference on Human Factors in Computing Systems (eds Yamashita, N. et al.) 861 (2025).

  • Hermann, E., Williams, G. Y. & Puntoni, S. Deploying artificial intelligence in services to aid vulnerable consumers. J. Acad. Market. Sci. 52, 1431–1451 (2024).

    Article 

    Google Scholar
     

  • Reif, E. et al. A recipe for arbitrary text style transfer with large language models. In Proc. 60th Annual Meeting of the Association for Computational Linguistics (eds Muresan, S. et al.) 2, 837–848 (Association for Computational Linguistics, 2022).

  • Manning, C. D., Clark, K., Hewitt, J., Khandelwal, U. & Levy, O. Emergent linguistic structure in artificial neural networks trained by self-supervision. Proc. Natl Acad. Sci. USA 117, 30046–30054 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, A. X., Xie, Y. & Zhang, J. It’s not just what you say, but how you say it: the effect of language style matching on perceived quality of consumer reviews. J. Interact. Market. 46, 70–86 (2019).

    Article 

    Google Scholar
     

  • Chen, J., Fan, W., Wei, J. & Liu, Z. Effects of linguistic style on persuasiveness of word-of-mouth messages with anonymous vs. identifiable sources. Market. Lett. 33, 593–605 (2022).

    Article 

    Google Scholar
     

  • Petty, R. E. & Cacioppo, J. T. The elaboration likelihood model of persuasion. In Advances in Experimental Social Psychology (ed. Berkowitz, L.) 123–205 (Academic Press, 1986).

  • Alter, A. L. & Oppenheimer, D. M. Uniting the tribes of fluency to form a metacognitive nation. Pers. Soc. Psychol. Rev. 13, 219–235 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Rogers, E. M., Singhal, A. & Quinlan, M. M. Diffusion of innovations. In An Integrated Approach to Communication Theory and Research (eds Stacks, D. W. et al.) 432–448 (Routledge, 2014).

  • Card, D. in Aspects of Labour Market Behaviour: Essays in Honour of John Vanderkamp (eds Christofides, L. N. et al.) 201–222 (Univ. Toronto Press, 1995).

  • Chetty, R., Hendren, N. & Katz, L. F. The effects of exposure to better neighborhoods on children: new evidence from the moving to opportunity experiment. Am. Econ. Rev. 106, 855–902 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Grewal, R. & Orhun, Y. Unpacking the instrumental variables approach. Impact at JMR https://www.ama.org/marketing-news/unpacking-the-instrumental-variables-approach/ (2024).

  • Company Portal Manual version 2.14 (Consumer Financial Protection Bureau, 2015).

  • Ananat, E. O. The wrong side(s) of the tracks: the causal effects of racial segregation on urban poverty and inequality. Am. Econ. J. Appl. Econ. 3, 34–66 (2011).

    Article 

    Google Scholar
     

  • Nunn, N. & Wantchekon, L. The slave trade and the origins of mistrust in Africa. Am. Econ. Rev. 101, 3221–3252 (2011).

    Article 

    Google Scholar
     

  • Lowes, S. & Montero, E. The legacy of colonial medicine in central Africa. Am. Econ. Rev. 111, 1284–1314 (2021).

    Article 

    Google Scholar
     

  • Grice, H. P. Logic and conversation. In Syntax and Semantics 3: Speech Acts (ed. Cole, P.) (Academic Press, 1975).

  • Halliday, M. A. K. & Hasan, R. Cohesion in English (Routledge, 2014).

  • Noy, S. & Zhang, W. Experimental evidence on the productivity effects of generative artificial intelligence. Science 381, 187–192 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brynjolfsson, E., Li, D. & Raymond, L. Generative AI at work. Q. J. Econ. 140, 889–942 (2025).

    Article 

    Google Scholar
     

  • Dang, J. & Liu, L. Extended artificial intelligence aversion: people deny humanness to artificial intelligence users. J. Pers. Soc. Psychol. https://doi.org/10.1037/pspi0000480 (2024).

  • What’s Most Important for Me to Include in a Complaint? (Consumer Financial Protection Bureau, 2025); https://www.consumerfinance.gov/complaint/

  • Tressler, C. How to Write an Effective Complaint Letter (Federal Trade Commission Consumer Advice, 2015); https://consumer.ftc.gov/consumer-alerts/2015/09/how-write-effective-complaint-letter

  • How to File a Complaint with the Consumer Financial Protection Bureau (CFPB) about Credit Repair (National Consumer Law Center, 2023); https://www.nclc.org/resources/how-to-file-a-complaint-with-the-consumer-financial-protection-bureau-cfpb-about-credit-repair/

  • Dou, Y., Hung, M., She, G. & Wang, L. L. Learning from peers: evidence from disclosure of consumer complaints. J. Account. Econ. 77, 101620 (2024).

    Article 

    Google Scholar
     

  • Luo, L. & Ma, L. Wisdom of the AI crowd? Can we detect AI-generated product reviews? SSRN https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4511025 (2024).

  • Jabarian, B. & Imas, A. Artificial Writing and Automated Detection Working Paper (National Bureau of Economic Research, 2025).

  • Prillaman, M. ‘ChatGPT detector’ catches AI-generated papers with unprecedented accuracy. Nature https://doi.org/10.1038/d41586-023-03479-4 (2023).

  • Terza, J. V., Basu, A. & Rathouz, P. J. Two-stage residual inclusion estimation: addressing endogeneity in health econometric modeling. J. Health Econ. 27, 531–543 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Wooldridge, J. M. Control function methods in applied econometrics. J. Hum. Resour. 50, 420–445 (2015).

    Article 

    Google Scholar
     

  • Basu, A., Coe, N. B. & Chapman, C. G. 2SLS versus 2SRI: appropriate methods for rare outcomes and/or rare exposures. Health Econ. 27, 937–955 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reimers, N. & Gurevych, I. Sentence-BERT: sentence embeddings using Siamese BERT-networks. In Proc. 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP) (eds Inui, K. et al.) 3982–3992 (Association for Computational Linguistics, 2019); https://aclanthology.org/D19-1410

  • Song, H., Tucker, A. L., Graue, R., Moravick, S. & Yang, J. J. Capacity pooling in hospitals: the hidden consequences of off-service placement. Manage. Sci. 66, 3825–3842 (2020).

    Article 

    Google Scholar
     

  • Matz, S.C., Teeny, J.D., Vaid, S.S. et al. The potential of generative AI for personalized persuasion at scale. Sci. Rep. 14, 4692 (2024); https://doi.org/10.1038/s41598-024-53755-0

  • Salvi, F., Horta Ribeiro, M. & Gallotti, R. et al. On the conversational persuasiveness of GPT-4. Nat. Hum. Behav. 9, 1645–1653 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2023); https://www.R-project.org/

  • Barrett, T. et al. data.table: Extension of data.frame. R package https://cran.r-project.org/package=data.table (2023).

  • Wickham, H. et al. ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics. R package https://cran.r-project.org/web/packages/ggplot2/index.html (2023).

  • Auguie, B. gridExtra: Miscellaneous functions for ‘grid’ graphics. R package version 2.3 https://cran.r-project.org/package=gridExtra (2017).

  • Wickham, H. et al. dplyr: A Grammar of Data Manipulation. R package version 1.1.3 https://cran.r-project.org/web/packages/dplyr/index.html (2023).

  • Wickham, H. & Seidel, D. scales: Scale Functions for Visualization. R package version 1.3.0 https://cran.r-project.org/web/packages/scales/index.html (2023).

  • Stammann, A., Czarnowske, D. & Heiss, F. bife: Binary Choice Models with Fixed Effects. R package version 0.7.2 https://github.com/amrei-stammann/bife (2022).

  • Croissant, Y. & Millo, G. plm: Linear Models for Panel Data. R package version 2.4-3 https://cran.r-project.org/package=plm (2023).

  • Kim, J. kim: A Toolkit for Behavioral Scientists. R package version 0.6.3 https://cran.r-project.org/web/packages/kim/index.html (2025).

  • Gaure, S. & Sepulveda, M. V. lfe: Linear Group Fixed Effects. R package version 3.1.1 https://cran.r-project.org/package=lfe (2025).

  • Lüdecke, D. et al. see: Model Visualisation Toolbox for ‘easystats’and ‘ggplot2’. R package version 0.12.0 https://cran.r-project.org/web/packages/see/index.html (2025).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *