Liang, W. et al. Monitoring AI-modified content at scale: a case study on the impact of ChatGPT on AI conference peer reviews. In International Conference on Machine Learning (eds Salakhutdinov, R. et al.) 29575–29620 (PMLR, 2024).
Liang, W., Zhang, Y., Wu, Z. et al. Quantifying large language model usage in scientific papers. Nat. Hum. Behav. 9, 2599–2609 (2025); https://doi.org/10.1038/s41562-025-02273-8
Liang, W. et al. The widespread adoption of large language model-assisted writing across society. Patterns 6, 101366 (2025).
Ling, Y., Kale, A. & Imas, A. Underreporting of AI use: the role of social desirability bias. SSRN Working Paper https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5464215 (2025).
Humlum, A. & Vestergaard, E. The unequal adoption of ChatGPT exacerbates existing inequalities among workers. Proc. Natl Acad. Sci. USA 122, e2414972121 (2025).
Park, E. & Gelles-Watnick, R. Most Americans Haven’t Used ChatGPT; Few Think It Will Have a Major Impact on Their Job (Pew Research Center, 2023); https://pewrsr.ch/3SCeWX9
McClain, C. Americans’ Use of ChatGPT Is Ticking Up, but Few Trust Its Election Information (Pew Research Center, 2024); https://shorturl.at/nn49B
Bick, A., Blandin, A. & Deming, D. J. The Rapid Adoption of Generative AI Working Paper No. 32966 (National Bureau of Economic Research, 2024); http://www.nber.org/papers/w32966
Wu, Y. et al. Autoformalization with large language models. Adv. Neural Inf. Process. Syst. 35, 32353–32368 (2022).
Saito, K., Wachi, A., Wataoka, K. & Akimoto, Y. Verbosity bias in preference labeling by large language models. Preprint at https://arxiv.org/abs/2310.10076 (2023).
Shahriar, S. & Hayawi, K. Let’s have a chat! A conversation with ChatGPT: technology, applications, and limitations. Artif. Intell. Appl. 2, 11–20 (2024).
Lusardi, A. & Mitchell, O. S. The economic importance of financial literacy: theory and evidence. J. Econ. Lit. 52, 5–44 (2014).
Fernandes, D., Lynch Jr, J. G. & Netemeyer, R. G. Financial literacy, financial education, and downstream financial behaviors. Manage. Sci. 60, 1861–1883 (2014).
Russo, G., Horta Ribeiro, M., Davidson, T. R., Veselovsky, V. & West, R. The AI review lottery: widespread AI-assisted peer reviews boost paper scores and acceptance rates. Proc. ACM Hum.-Comput. Interact. (ed. Nichols, J.) 9, CSCW486 (2025).
Kadoma, K. et al. The role of inclusion, control, and ownership in workplace AI-mediated communication. In Proc. 2024 CHI Conf. Hum. Factors Comput. Syst. (eds Mueller, F. F. et al.) 1016 (2024).
Wiles, E. & Horton, J. J. Generative AI and labor market matching efficiency. SSRN Working Paper https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5187344 (2025).
Wester, J., De Jong, S., Pohl, H. & Van Berkel, N. Exploring people’s perceptions of LLM-generated advice. Comput. Hum. Behav. Artif. Hum. 2, 100072 (2024).
Kadoma, K., Metaxa, D. & Naaman, M. Generative AI and perceptual harms: who’s suspected of using LLMs? In Proc. 2025 CHI Conference on Human Factors in Computing Systems (eds Yamashita, N. et al.) 861 (2025).
Hermann, E., Williams, G. Y. & Puntoni, S. Deploying artificial intelligence in services to aid vulnerable consumers. J. Acad. Market. Sci. 52, 1431–1451 (2024).
Reif, E. et al. A recipe for arbitrary text style transfer with large language models. In Proc. 60th Annual Meeting of the Association for Computational Linguistics (eds Muresan, S. et al.) 2, 837–848 (Association for Computational Linguistics, 2022).
Manning, C. D., Clark, K., Hewitt, J., Khandelwal, U. & Levy, O. Emergent linguistic structure in artificial neural networks trained by self-supervision. Proc. Natl Acad. Sci. USA 117, 30046–30054 (2020).
Liu, A. X., Xie, Y. & Zhang, J. It’s not just what you say, but how you say it: the effect of language style matching on perceived quality of consumer reviews. J. Interact. Market. 46, 70–86 (2019).
Chen, J., Fan, W., Wei, J. & Liu, Z. Effects of linguistic style on persuasiveness of word-of-mouth messages with anonymous vs. identifiable sources. Market. Lett. 33, 593–605 (2022).
Petty, R. E. & Cacioppo, J. T. The elaboration likelihood model of persuasion. In Advances in Experimental Social Psychology (ed. Berkowitz, L.) 123–205 (Academic Press, 1986).
Alter, A. L. & Oppenheimer, D. M. Uniting the tribes of fluency to form a metacognitive nation. Pers. Soc. Psychol. Rev. 13, 219–235 (2009).
Rogers, E. M., Singhal, A. & Quinlan, M. M. Diffusion of innovations. In An Integrated Approach to Communication Theory and Research (eds Stacks, D. W. et al.) 432–448 (Routledge, 2014).
Card, D. in Aspects of Labour Market Behaviour: Essays in Honour of John Vanderkamp (eds Christofides, L. N. et al.) 201–222 (Univ. Toronto Press, 1995).
Chetty, R., Hendren, N. & Katz, L. F. The effects of exposure to better neighborhoods on children: new evidence from the moving to opportunity experiment. Am. Econ. Rev. 106, 855–902 (2016).
Grewal, R. & Orhun, Y. Unpacking the instrumental variables approach. Impact at JMR https://www.ama.org/marketing-news/unpacking-the-instrumental-variables-approach/ (2024).
Company Portal Manual version 2.14 (Consumer Financial Protection Bureau, 2015).
Ananat, E. O. The wrong side(s) of the tracks: the causal effects of racial segregation on urban poverty and inequality. Am. Econ. J. Appl. Econ. 3, 34–66 (2011).
Nunn, N. & Wantchekon, L. The slave trade and the origins of mistrust in Africa. Am. Econ. Rev. 101, 3221–3252 (2011).
Lowes, S. & Montero, E. The legacy of colonial medicine in central Africa. Am. Econ. Rev. 111, 1284–1314 (2021).
Grice, H. P. Logic and conversation. In Syntax and Semantics 3: Speech Acts (ed. Cole, P.) (Academic Press, 1975).
Halliday, M. A. K. & Hasan, R. Cohesion in English (Routledge, 2014).
Noy, S. & Zhang, W. Experimental evidence on the productivity effects of generative artificial intelligence. Science 381, 187–192 (2023).
Brynjolfsson, E., Li, D. & Raymond, L. Generative AI at work. Q. J. Econ. 140, 889–942 (2025).
Dang, J. & Liu, L. Extended artificial intelligence aversion: people deny humanness to artificial intelligence users. J. Pers. Soc. Psychol. https://doi.org/10.1037/pspi0000480 (2024).
What’s Most Important for Me to Include in a Complaint? (Consumer Financial Protection Bureau, 2025); https://www.consumerfinance.gov/complaint/
Tressler, C. How to Write an Effective Complaint Letter (Federal Trade Commission Consumer Advice, 2015); https://consumer.ftc.gov/consumer-alerts/2015/09/how-write-effective-complaint-letter
How to File a Complaint with the Consumer Financial Protection Bureau (CFPB) about Credit Repair (National Consumer Law Center, 2023); https://www.nclc.org/resources/how-to-file-a-complaint-with-the-consumer-financial-protection-bureau-cfpb-about-credit-repair/
Dou, Y., Hung, M., She, G. & Wang, L. L. Learning from peers: evidence from disclosure of consumer complaints. J. Account. Econ. 77, 101620 (2024).
Luo, L. & Ma, L. Wisdom of the AI crowd? Can we detect AI-generated product reviews? SSRN https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4511025 (2024).
Jabarian, B. & Imas, A. Artificial Writing and Automated Detection Working Paper (National Bureau of Economic Research, 2025).
Prillaman, M. ‘ChatGPT detector’ catches AI-generated papers with unprecedented accuracy. Nature https://doi.org/10.1038/d41586-023-03479-4 (2023).
Terza, J. V., Basu, A. & Rathouz, P. J. Two-stage residual inclusion estimation: addressing endogeneity in health econometric modeling. J. Health Econ. 27, 531–543 (2008).
Wooldridge, J. M. Control function methods in applied econometrics. J. Hum. Resour. 50, 420–445 (2015).
Basu, A., Coe, N. B. & Chapman, C. G. 2SLS versus 2SRI: appropriate methods for rare outcomes and/or rare exposures. Health Econ. 27, 937–955 (2018).
Reimers, N. & Gurevych, I. Sentence-BERT: sentence embeddings using Siamese BERT-networks. In Proc. 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP) (eds Inui, K. et al.) 3982–3992 (Association for Computational Linguistics, 2019); https://aclanthology.org/D19-1410
Song, H., Tucker, A. L., Graue, R., Moravick, S. & Yang, J. J. Capacity pooling in hospitals: the hidden consequences of off-service placement. Manage. Sci. 66, 3825–3842 (2020).
Matz, S.C., Teeny, J.D., Vaid, S.S. et al. The potential of generative AI for personalized persuasion at scale. Sci. Rep. 14, 4692 (2024); https://doi.org/10.1038/s41598-024-53755-0
Salvi, F., Horta Ribeiro, M. & Gallotti, R. et al. On the conversational persuasiveness of GPT-4. Nat. Hum. Behav. 9, 1645–1653 (2025).
R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2023); https://www.R-project.org/
Barrett, T. et al. data.table: Extension of data.frame. R package https://cran.r-project.org/package=data.table (2023).
Wickham, H. et al. ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics. R package https://cran.r-project.org/web/packages/ggplot2/index.html (2023).
Auguie, B. gridExtra: Miscellaneous functions for ‘grid’ graphics. R package version 2.3 https://cran.r-project.org/package=gridExtra (2017).
Wickham, H. et al. dplyr: A Grammar of Data Manipulation. R package version 1.1.3 https://cran.r-project.org/web/packages/dplyr/index.html (2023).
Wickham, H. & Seidel, D. scales: Scale Functions for Visualization. R package version 1.3.0 https://cran.r-project.org/web/packages/scales/index.html (2023).
Stammann, A., Czarnowske, D. & Heiss, F. bife: Binary Choice Models with Fixed Effects. R package version 0.7.2 https://github.com/amrei-stammann/bife (2022).
Croissant, Y. & Millo, G. plm: Linear Models for Panel Data. R package version 2.4-3 https://cran.r-project.org/package=plm (2023).
Kim, J. kim: A Toolkit for Behavioral Scientists. R package version 0.6.3 https://cran.r-project.org/web/packages/kim/index.html (2025).
Gaure, S. & Sepulveda, M. V. lfe: Linear Group Fixed Effects. R package version 3.1.1 https://cran.r-project.org/package=lfe (2025).
Lüdecke, D. et al. see: Model Visualisation Toolbox for ‘easystats’and ‘ggplot2’. R package version 0.12.0 https://cran.r-project.org/web/packages/see/index.html (2025).
