Hentschel, M. et al. Attosecond metrology. Nature 414, 509–513 (2001).
Paul, P. M. et al. Observation of a train of attosecond pulses from high harmonic generation. Science 292, 1689–1692 (2001).
Antoine, P., L’Huillier, A. & Lewenstein, M. Attosecond pulse trains using high–order harmonics. Phys. Rev. Lett. 77, 1234–1237 (1996).
Schultze, M. et al. Delay in photoemission. Science 328, 1658–1662 (2010).
Klünder, K. et al. Probing single-photon ionization on the attosecond time scale. Phys. Rev. Lett. 106, 143002 (2011).
Zhong, S. Y. et al. Attosecond electron–spin dynamics in Xe 4d photoionization. Nat. Commun. 11, 5042 (2020).
Biegert, J. et al. Attosecond technology(ies) and science. J. Phys. B At. Mol. Opt. Phys. 54, 070201 (2021).
Goulielmakis, E. et al. Real-time observation of valence electron motion. Nature 466, 739–743 (2010).
Holler, M. et al. Attosecond electron wave-packet interference observed by transient absorption. Phys. Rev. Lett. 106, 123601 (2011).
Chini, M. et al. Subcycle ac stark shift of helium excited states probed with isolated attosecond pulses. Phys. Rev. Lett. 109, 073601 (2012).
Ott, C. et al. Lorentz meets Fano in spectral line shapes: a universal phase and its laser control. Science 340, 716–720 (2013).
Wang, H. et al. Attosecond time-resolved autoionization of argon. Phys. Rev. Lett. 105, 143002 (2010).
Geneaux, R. et al. Transient absorption spectroscopy using high harmonic generation: a review of ultrafast X-ray dynamics in molecules and solids. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 377, 20170463 (2019).
Bernhardt, B. et al. High-spectral-resolution attosecond absorption spectroscopy of autoionization in xenon. Phys. Rev. A 89, 023408 (2014).
Takahashi, E. J. et al. Attosecond nonlinear optics using gigawatt-scale isolated attosecond pulses. Nat. Commun. 4, 2691 (2013).
Tzallas, P. et al. Direct observation of attosecond light bunching. Nature 426, 267–271 (2003).
Calegari, F. et al. Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses. Science 346, 336–339 (2014).
Krausz, F. & Ivanov, M. Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009).
Cavalieri, A. L. et al. Attosecond spectroscopy in condensed matter. Nature 449, 1029–1032 (2007).
Uiberacker, M. et al. Attosecond real-time observation of electron tunnelling in atoms. Nature 446, 627–632 (2007).
Hu, S. Q. & Meng, S. Ultrafast condensed matter physics at attoseconds. Chin. Phys. Lett. 40, 117801 (2023).
Moulet, A. et al. Soft x-ray excitonics. Science 357, 1134–1138 (2017).
Tancogne-Dejean, N., Sentef, M. A. & Rubio, A. Ultrafast modification of Hubbard U in a strongly correlated material: ab initio high-harmonic generation in NiO. Phys. Rev. Lett. 121, 097402 (2018).
Nisoli, M. et al. Attosecond electron dynamics in molecules. Chem. Rev. 117, 10760–10825 (2017).
Leone, S. R. Reinvented: an attosecond chemist. Annu. Rev. Phys. Chem. 75, 1–19 (2024).
Palacios, A., Sanz-Vicario, J. L. & Martín, F. Theoretical methods for attosecond electron and nuclear dynamics: applications to the H2 molecule. J. Phys. B At. Mol. Opt. Phys. 48, 242001 (2015).
Chang, Z. H., Corkum, P. B. & Leone, S. R. Attosecond optics and technology: progress to date and future prospects [Invited]. J. Opt. Soc. Am. B 33, 1081–1097 (2016).
Schultze, M. et al. Controlling dielectrics with the electric field of light. Nature 493, 75–78 (2013).
Nabben, D. et al. Attosecond electron microscopy of sub-cycle optical dynamics. Nature 619, 63–67 (2023).
Tzallas, P. et al. Extreme-ultraviolet pump–probe studies of one-femtosecond-scale electron dynamics. Nat. Phys. 7, 781–784 (2011).
Sekikawa, T. et al. Nonlinear optics in the extreme ultraviolet. Nature 432, 605–608 (2004).
Eschen, W. et al. Towards attosecond imaging at the nanoscale using broadband holography-assisted coherent imaging in the extreme ultraviolet. Commun. Phys. 4, 154 (2021).
Pertot, Y. et al. Time-resolved x-ray absorption spectroscopy with a water window high-harmonic source. Science 355, 264–267 (2017).
L’Huillier, A. et al. High-order Harmonic-generation cutoff. Phys. Rev. A 48, R3433–R3436 (1993).
Cattaneo, L. et al. Attosecond coupled electron and nuclear dynamics in dissociative ionization of H2. Nat. Phys. 14, 733–738 (2018).
Neppl, S. et al. Direct observation of electron propagation and dielectric screening on the atomic length scale. Nature 517, 342–346 (2015).
Saule, T. et al. High-flux ultrafast extreme-ultraviolet photoemission spectroscopy at 18.4 MHz pulse repetition rate. Nat. Commun. 10, 458 (2019).
Chatziathanasiou, S. et al. Generation of attosecond light pulses from gas and solid state media. Photonics 4, 26 (2017).
Midorikawa, K. Progress on table-top isolated attosecond light sources. Nat. Photonics 16, 267–278 (2022).
Luo, W. et al. Attosecond Thomson-scattering x-ray source driven by laser-based electron acceleration. Appl. Phys. Lett. 103, 174103 (2013).
Luo, W. et al. Generation of bright attosecond x-ray pulse trains via Thomson scattering from laser-plasma accelerators. Opt. Express 22, 32098–32106 (2014).
Venkat, P. & Holkundkar, A. R. Higher harmonics and attosecond pulse generation by laser induced Thomson scattering in atomic clusters. Phys. Rev. Accel. Beams 22, 084401 (2019).
Baker, S. et al. Femtosecond to attosecond light pulses from a molecular modulator. Nat. Photonics 5, 664–671 (2011).
Hassan, M. T. et al. Optical attosecond pulses and tracking the nonlinear response of bound electrons. Nature 530, 66–70 (2016).
Greening, D. et al. Generation and measurement of isolated attosecond pulses with enhanced flux using a two colour synthesized laser field. Opt. Express 28, 23329–23337 (2020).
Xue, B. et al. Fully stabilized multi-TW optical waveform synthesizer: toward gigawatt isolated attosecond pulses. Sci. Adv. 6, eaay2802 (2020).
Duris, J. et al. Tunable isolated attosecond X-ray pulses with gigawatt peak power from a free-electron laser. Nat. Photonics 14, 30–36 (2020).
Liu, W. H. et al. Generating high repetition rate X-ray attosecond pulses in a diffraction limited storage ring. Sci. Rep. 13, 14019 (2023).
Hettel, R. DLSR design and plans: an international overview. J. Synchrotron Radiat. 21, 843–855 (2014).
Travers, J. C. et al. High-energy pulse self-compression and ultraviolet generation through soliton dynamics in hollow capillary fibres. Nat. Photonics 13, 547–554 (2019).
Ferray, M. et al. Multiple-harmonic conversion of 1064 nm radiation in rare gases. J. Phys. B At. Mol. Opt. Phys. 21, L31–L35 (1988).
Corkum, P. B. Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993).
Kulander, K. C., Schafer, K. J. & Krause, J. L. In Super-Intense Laser Atom Physics Vol. 316, (eds Piraux, B. et al.) 95–110 (NATO ASI Series B: Physics, Plenum, 1993).
Schafer, K. J. et al. Above threshold ionization beyond the high harmonic cutoff. Phys. Rev. Lett. 70, 1599–1602 (1993).
Okino, T. et al. Direct observation of an attosecond electron wave packet in a nitrogen molecule. Sci. Adv. 1, e1500356 (2015).
Christov, I. P., Murnane, M. M. & Kapteyn, H. C. High-harmonic generation of attosecond pulses in the “Single-Cycle” regime. Phys. Rev. Lett. 78, 1251–1254 (1997).
Baltuška, A. et al. Attosecond control of electronic processes by intense light fields. Nature 421, 611–615 (2003).
Drescher, M. et al. X-ray pulses approaching the attosecond frontier. Science 291, 1923–1927 (2001).
Kienberger, R. et al. Atomic transient recorder. Nature 427, 817–821 (2004).
Goulielmakis, E. et al. Single-cycle nonlinear optics. Science 320, 1614–1617 (2008).
Gaumnitz, T. et al. Streaking of 43-attosecond soft-X-ray pulses generated by a passively CEP-stable mid-infrared driver. Opt. Express 25, 27506–27518 (2017).
Ferrari, F. et al. High-energy isolated attosecond pulses generated by above-saturation few-cycle fields. Nat. Photonics 4, 875–879 (2010).
Sansone, G. et al. Isolated single-cycle attosecond pulses. Science 314, 443–446 (2006).
Rykovanov, S. G. et al. Intense single attosecond pulses from surface harmonics using the polarization gating technique. N. J. Phys. 10, 025025 (2008).
Shan, B., Ghimire, S. & Chang, Z. H. Generation of the attosecond extreme ultraviolet supercontinuum by a polarization gating. J. Mod. Opt. 52, 277–283 (2005).
Mashiko, H. et al. Tunable frequency-controlled isolated attosecond pulses characterized by either 750 nm or 400 nm wavelength streak fields. Opt. Express 18, 25887–25895 (2010).
Kim, K. T. et al. Photonic streaking of attosecond pulse trains. Nat. Photonics 7, 651–656 (2013).
Tzallas, P. et al. Generation of intense continuum extreme-ultraviolet radiation by many-cycle laser fields. Nat. Phys. 3, 846–850 (2007).
Ghimire, S. & Reis, D. A. High-harmonic generation from solids. Nat. Phys. 15, 10–16 (2019).
Luu, T. T. et al. Extreme ultraviolet high-harmonic spectroscopy of solids. Nature 521, 498–502 (2015).
Golde, D., Meier, T. & Koch, S. W. High harmonics generated in semiconductor nanostructures by the coupled dynamics of optical inter- and intraband excitations. Phys. Rev. B 77, 075330 (2008).
Ghimire, S. et al. Redshift in the optical absorption of ZnO single crystals in the presence of an intense midinfrared laser field. Phys. Rev. Lett. 107, 167407 (2011).
Lyssenko, V. G. et al. Direct measurement of the spatial displacement of Bloch-oscillating electrons in semiconductor superlattices. Phys. Rev. Lett. 79, 301–304 (1997).
Vampa, G. et al. Theoretical analysis of high-harmonic generation in solids. Phys. Rev. Lett. 113, 073901 (2014).
Wu, M. X. et al. High-harmonic generation from Bloch electrons in solids. Phys. Rev. A 91, 043839 (2015).
Hawkins, P. G., Ivanov, M. Y. & Yakovlev, V. S. Effect of multiple conduction bands on high-harmonic emission from dielectrics. Phys. Rev. A 91, 013405 (2015).
Goulielmakis, E. & Brabec, T. High harmonic generation in condensed matter. Nat. Photonics 16, 411–421 (2022).
Krause, J. L., Schafer, K. J. & Kulander, K. C. High-order harmonic generation from atoms and ions in the high intensity regime. Phys. Rev. Lett. 68, 3535–3538 (1992).
Ghimire, S. et al. Observation of high-order harmonic generation in a bulk crystal. Nat. Phys. 7, 138–141 (2011).
Germain, L. & Cheeke, J. D. N. Generation and detection of high-order harmonics in liquids using a scanning acoustic microscope. J. Acoust. Soc. Am. 83, 942–949 (1988).
Ding, Z. W. et al. High-order harmonic generation in liquids in bicircularly polarized laser fields. Phys. Rev. A 107, 013503 (2023).
Luu, T. T. et al. Extreme–ultraviolet high–harmonic generation in liquids. Nat. Commun. 9, 3723 (2018).
Xia, C. L. et al. Role of charge-resonance states in liquid high-order harmonic generation. Phys. Rev. A 105, 013115 (2022).
Sansone, G., Poletto, L. & Nisoli, M. High-energy attosecond light sources. Nat. Photonics 5, 655–663 (2011).
Hüller, S. & Meyer-ter-Vehn, J. High-order harmonic radiation from solid layers irradiated by subpicosecond laser pulses. Phys. Rev. A 48, 3906–3909 (1993).
Nomura, Y. et al. Attosecond phase locking of harmonics emitted from laser-produced plasmas. Nat. Phys. 5, 124–128 (2009).
Dromey, B. et al. Bright multi-keV harmonic generation from relativistically oscillating plasma surfaces. Phys. Rev. Lett. 99, 085001 (2007).
Thaury, C. et al. Plasma mirrors for ultrahigh-intensity optics. Nat. Phys. 3, 424–429 (2007).
Bulanov, S. V., Naumova, N. M. & Pegoraro, F. Interaction of an ultrashort, relativistically strong laser pulse with an overdense plasma. Phys. Plasmas 1, 745–757 (1994).
Lichters, R., Meyer-ter-Vehn, J. & Pukhov, A. Short-pulse laser harmonics from oscillating plasma surfaces driven at relativistic intensity. Phys. Plasmas 3, 3425–3437 (1996).
Quéré, F. et al. Coherent wake emission of high-order harmonics from overdense plasmas. Phys. Rev. Lett. 96, 125004 (2006).
Salmeh, F. & Mohebbi, M. Generation of a single attosecond pulse by gaseous atoms in a conical plasmonic nanostructure using a radially polarized laser beam. Opt. Laser Technol. 170, 110319 (2024).
Yang, Y. Y. et al. High-harmonic and single attosecond pulse generation using plasmonic field enhancement in ordered arrays of gold nanoparticles with chirped laser pulses. Opt. Express 21, 2195–2205 (2013).
Makos, I. et al. 10-gigawatt attosecond source for non-linear XUV optics and XUV-pump-XUV-probe studies. Sci. Rep. 10, 3759 (2020).
Popmintchev, T. et al. Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers. Science 336, 1287–1291 (2012).
Chen, Z. P. et al. Attosecond pulses from a solid driven by a synthesized two-color field at megahertz repetition rate. ACS Photonics 12, 2819–2827 (2025).
Maiman, T. H. Stimulated optical radiation in ruby. Nature 187, 493–494 (1960).
McPherson, A. et al. Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases. J. Opt. Soc. Am. B 4, 595–601 (1987).
Li, X. F. et al. Multiple-harmonic generation in rare gases at high laser intensity. Phys. Rev. A 39, 5751–5761 (1989).
Chang, Z. H. Fundamentals of Attosecond Optics (CRC Press, 2016).
Major, B. et al. Compact intense extreme-ultraviolet source. Optica 8, 960–965 (2021).
Ravasio, A. et al. Single-shot diffractive imaging with a table-top femtosecond soft x-ray laser-harmonics source. Phys. Rev. Lett. 103, 028104 (2009).
Manschwetus, B. et al. Two-photon double ionization of neon using an intense attosecond pulse train. Phys. Rev. A 93, 061402 (2016).
Chang, Z. H. et al. Intense infrared lasers for strong-field science. Adv. Opt. Photonics 14, 652–782 (2022).
Strickland, D. & Mourou, G. Compression of amplified chirped optical pulses. Opt. Commun. 56, 219–221 (1985).
Mourou, G. Nobel Lecture: extreme light physics and application. Rev. Mod. Phys. 91, 030501 (2019).
Joyce, D. B. & Schmid, F. Progress in the growth of large scale Ti:sapphire crystals by the heat exchanger method (HEM) for petawatt class lasers. J. Cryst. Growth 312, 1138–1141 (2010).
Li, W. Q. et al. 339 J high-energy Ti:sapphire chirped-pulse amplifier for 10 PW laser facility. Opt. Lett. 43, 5681–5684 (2018).
Maine, P. et al. Generation of ultrahigh peak power pulses by chirped pulse amplification. IEEE J. Quantum Electron. 24, 398–403 (1988).
Chu, Y. X. et al. High-energy large-aperture Ti:sapphire amplifier for 5 PW laser pulses. Opt. Lett. 40, 5011–5014 (2015).
Hoffstädt, A. High-average-power flash-lamp-pumped Ti:sapphire laser. Opt. Lett. 19, 1523–1525 (1994).
Pfaff, Y. et al. Nonlinear pulse compression of a 200 mJ and 1 kW ultrafast thin-disk amplifier. Opt. Express 31, 22740–22756 (2023).
Herkommer, C. et al. Ultrafast thin-disk multipass amplifier with 720 mJ operating at kilohertz repetition rate for applications in atmospheric research. Opt. Express 28, 30164–30173 (2020).
Pfaff, Y. et al. Thin-disk based regenerative chirped pulse amplifier with 550 mJ pulse energy at 1 kHz repetition rate. In: Proc. Advanced Solid State Lasers 2021 (Optica Publishing Group, 2021).
Giordmaine, J. A. & Miller, R. C. Tunable coherent parametric oscillation in LiNbO3 at optical frequencies. Phys. Rev. Lett. 14, 973–976 (1965).
Manzoni, C. & Cerullo, G. Design criteria for ultrafast optical parametric amplifiers. J. Opt. 18, 103501 (2016).
Nikogosyan, D. N. Beta barium borate (BBO). Appl. Phys. A 52, 359–368 (1991).
Thiré, N. et al. 10 mJ 5-cycle pulses at 1.8 μm through optical parametric amplification. Appl. Phys. Lett. 106, 091110 (2015).
Cerullo, G. et al. Sub-8-fs pulses from an ultrabroadband optical parametric amplifier in the visible. Opt. Lett. 23, 1283–1285 (1998).
Shirakawa, A. et al. Sub-5-fs visible pulse generation by pulse-front-matched noncollinear optical parametric amplification. Appl. Phys. Lett. 74, 2268–2270 (1999).
Vozzi, C. et al. High-energy, few-optical-cycle pulses at 1.5 µm with passive carrier-envelope phase stabilization. Opt. Express 14, 10109–10116 (2006).
Brida, D. et al. Sub-two-cycle light pulses at 1.6 μm from an optical parametric amplifier. Opt. Lett. 33, 741–743 (2008).
Vozzi, C. et al. Millijoule-level phase-stabilized few-optical-cycle infrared parametric source. Opt. Lett. 32, 2957–2959 (2007).
Takahashi, E. J. et al. 10mJ class femtosecond optical parametric amplifier for generating soft x-ray harmonics. Appl. Phys. Lett. 93, 041111 (2008).
Kapteyn, H. C. et al. Prepulse energy suppression for high-energy ultrashort pulses using self-induced plasma shuttering. Opt. Lett. 16, 490–492 (1991).
Rosen, M. D. et al. Plasma production from ultraviolet-transmitting targets using subpicosecond ultraviolet radiation. Opt. Lett. 16, 1261–1263 (1991).
Doumy, G. et al. Complete characterization of a plasma mirror for the production of high-contrast ultraintense laser pulses. Phys. Rev. E 69, 026402 (2004).
Itatani, J. et al. Suppression of the amplified spontaneous emission in chirped-pulse-amplification lasers by clean high-energy seed-pulse injection. Opt. Commun. 148, 70–74 (1998).
Kalashnikov, M. P. et al. Characterization of a nonlinear filter for the front-end of a high contrast double-CPA Ti:sapphire laser. Opt. Express 12, 5088–5097 (2004).
Jullien, A. et al. 10-10 temporal contrast for femtosecond ultraintense lasers by cross-polarized wave generation. Opt. Lett. 30, 920–922 (2005).
Dubietis, A., Jonušauskas, G. & Piskarskas, A. Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal. Opt. Commun. 88, 437–440 (1992).
Yu, L. H. et al. Optimization for high-energy and high-efficiency broadband optical parametric chirped-pulse amplification in LBO near 800 nm. Opt. Lett. 40, 3412–3415 (2015).
Begishev, I. A. et al. Final amplifier of an ultra-intense all-OPCPA system with 13-J output signal energy and 41% pump-to-signal conversion efficiency. Opt. Express 31, 24785–24795 (2023).
Lozhkarev, V. V. et al. Compact 0.56 Petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals. Laser Phys. Lett. 4, 421–427 (2007).
Herrmann, D. et al. Generation of sub-three-cycle, 16 TW light pulses by using noncollinear optical parametric chirped-pulse amplification. Opt. Lett. 34, 2459–2461 (2009).
Deng, Y. P. et al. Carrier-envelope-phase-stable, 12 mJ, 15 cycle laser pulses at 21 μm. Opt. Lett. 37, 4973–4975 (2012).
Yin, Y. C. et al. High-efficiency optical parametric chirped-pulse amplifier in BiB3O6 for generation of 3 mJ, two-cycle, carrier-envelope-phase-stable pulses at 1.7 μm. Opt. Lett. 41, 1142–1145 (2016).
Li, J. et al. Polarization gating of high harmonic generation in the water window. Appl. Phys. Lett. 108, 231102 (2016).
Kiriyama, H. et al. Prepulse-free, multi-terawatt, sub-30-fs laser system. Opt. Express 14, 438–445 (2006).
Kitagawa, Y. et al. Petawatt laser for fast ignitor and laser matter interaction research. In Proc. Technical Digest. CLEO/Pacific Rim 2001. 4th Pacific Rim Conference on Lasers and Electro-Optics (Cat. No.01TH8557) (IEEE, 2002).
Moses, J. et al. Temporal optimization of ultrabroadband high-energy OPCPA. Opt. Express 17, 5540–5555 (2009).
Ross, I. N. et al. Analysis and optimization of optical parametric chirped pulse amplification. J. Opt. Soc. Am. B 19, 2945–2956 (2002).
Fuji, T. et al. Parametric amplification of few-cycle carrier-envelope phase-stable pulses at 2.1 μm. Opt. Lett. 31, 1103–1105 (2006).
Moses, J. et al. Optimized 2-micron optical parametric chirped pulse amplifier for high harmonic generation. In Proc. 16th International Conference on Ultrafast Phenomena XVI 786–788 (Springer, 2008).
Zhang, Q. B. et al. Dual-chirped optical parametric amplification for generating few hundred mJ infrared pulses. Opt. Express 19, 7190–7212 (2011).
Fu, Y. X., Midorikawa, K. & Takahashi, E. J. Towards a petawatt-class few-cycle infrared laser system via dual-chirped optical parametric amplification. Sci. Rep. 8, 7692 (2018).
Nabekawa, Y. et al. Multi-terawatt laser system generating 12-fs pulses at 100 Hz repetition rate. Appl. Phys. B 101, 523–534 (2010).
Cunningham, E., Wu, Y. & Chang, Z. H. Carrier-envelope phase control of a 10 Hz, 25 TW laser for high-flux extreme ultraviolet quasi-continuum generation. Appl. Phys. Lett. 107, 201108 (2015).
Xu, L. et al. 100-mJ class, sub-two-cycle, carrier-envelope phase-stable dual-chirped optical parametric amplification. Opt. Lett. 47, 3371–3374 (2022).
Xu, L. & Takahashi, E. J. Dual-chirped optical parametric amplification of high-energy single-cycle laser pulses. Nat. Photonics 18, 99–106 (2024).
Schmidt, B. E. et al. Frequency domain optical parametric amplification. Nat. Commun. 5, 3643 (2014).
Gu, X. et al. Generation of carrier-envelope-phase-stable 2-cycle 740-μJ pulses at 21-μm carrier wavelength. Opt. Express 17, 62–69 (2009).
Nakamura, K. et al. Diagnostics, control and performance parameters for the BELLA high repetition rate petawatt class laser. IEEE J. Quantum Electron. 53, 1200121 (2017).
Li, Z. Y. et al. Influence of spectral clipping in chirped pulse amplification laser system on pulse temporal profile. In Proc. SPIE 6823, High-Power Lasers and Applications IV 682315 (SPIE, 2008).
Ma, J. G. et al. Spatiotemporal noise characterization for chirped-pulse amplification systems. Nat. Commun. 6, 6192 (2015).
Bromage, J., Dorrer, C. & Jungquist, R. K. Temporal contrast degradation at the focus of ultrafast pulses from high-frequency spectral phase modulation. J. Optical Soc. Am. B 29, 1125–1135 (2012).
Wang, J. et al. Spatiotemporal coherent noise in frequency-domain optical parametric amplification. Opt. Express 26, 10953–10967 (2018).
Gruson, V. et al. 2.5 TW, two-cycle IR laser pulses via frequency domain optical parametric amplification. Opt. Express 25, 27706–27714 (2017).
Phillips, C. R. et al. Frequency-domain nonlinear optics in two-dimensionally patterned quasi-phase-matching media. Opt. Express 24, 15940–15953 (2016).
Ma, J. G. et al. Origin and suppression of back conversion in a phase-matched nonlinear frequency down-conversion process. Chin. Opt. Lett. 15, 021901–021904 (2017).
Ma, J. G. et al. Quasi-parametric amplification of chirped pulses based on a Sm3+-doped yttrium calcium oxyborate crystal. Optica 2, 1006–1009 (2015).
Ma, J. G. et al. Demonstration of 85% pump depletion and 10−6 noise content in quasi-parametric chirped-pulse amplification. Light Sci. Appl. 11, 269 (2022).
Ma, J. G. et al. Broadband, efficient, and robust quasi-parametric chirped-pulse amplification. Opt. Express 25, 25149–25164 (2017).
Ding, Y. F. et al. Mid-infrared quasi-parametric chirped-pulse amplification based on Sm:LGN crystals. Opt. Express 31, 8864–8874 (2023).
Lin, Q. et al. Optical modification of nonlinear crystals for quasi-parametric chirped-pulse amplification. Fundam. Res. 4, 43–50 (2024).
Zhou, P. et al. Coherent beam combining of fiber amplifiers using stochastic parallel gradient descent algorithm and its application. IEEE J. Sel. Top. Quantum Electron. 15, 248–256 (2009).
Fan, T. Y. Laser beam combining for high-power, high-radiance sources. IEEE J. Sel. Top. Quantum Electron. 11, 567–577 (2005).
Chang, W. Z. et al. Femtosecond pulse spectral synthesis in coherently-spectrally combined multi-channel fiber chirped pulse amplifiers. Opt. Express 21, 3897–3910 (2013).
Seise, E. et al. Coherent addition of fiber-amplified ultrashort laser pulses. Opt. Express 18, 27827–27835 (2010).
Mueller, M. et al. 1.8-kW 16-channel ultrafast fiber laser system. In Proc. SPIE 10512, Fiber Lasers XV: Technology and Systems 1051208 (SPIE, 2018).
Klenke, A. et al. 530 W, 1.3 mJ, four-channel coherently combined femtosecond fiber chirped-pulse amplification system. Opt. Lett. 38, 2283–2285 (2013).
Seise, E. et al. 88 W 0.5 mJ femtosecond laser pulses from two coherently combined fiber amplifiers. Opt. Lett. 36, 3858–3860 (2011).
Klenke, A. et al. 22 GW peak-power fiber chirped-pulse-amplification system. Opt. Lett. 39, 6875–6878 (2014).
Klenke, A. et al. Coherently-combined two channel femtosecond fiber CPA system producing 3 mJ pulse energy. Opt. Express 19, 24280–24285 (2011).
Zhou, S. A., Wise, F. W. & Ouzounov, D. G. Divided-pulse amplification of ultrashort pulses. Opt. Lett. 32, 871–873 (2007).
Kong, L. J. et al. Generation of megawatt peak power picosecond pulses from a divided-pulse fiber amplifier. Opt. Lett. 37, 253–255 (2012).
Roither, S. et al. Sagnac interferometric multipass loop amplifier. Opt. Express 20, 25121–25129 (2012).
Zaouter, Y. et al. Femtosecond fiber chirped- and divided-pulse amplification system. Opt. Lett. 38, 106–108 (2013).
Lesparre, F. et al. Yb:YAG single-crystal fiber amplifiers for picosecond lasers using the divided pulse amplification technique. Opt. Lett. 41, 1628–1631 (2016).
Pouysegur, J. et al. Simple Yb:YAG femtosecond booster amplifier using divided-pulse amplification. Opt. Express 24, 9896–9904 (2016).
Daniault, L. et al. High peak-power stretcher-free femtosecond fiber amplifier using passive spatio-temporal coherent combining. Opt. Express 20, 21627–21634 (2012).
Kuznetsov, I., Chizhov, S. & Palashov, O. High-energy and high-average-power two-channel Yb:YAG amplifier with passive coherent combining. J. Opt. Soc. Am. B 39, 2692–2696 (2022).
Kienel, M. et al. Analysis of passively combined divided-pulse amplification as an energy-scaling concept. Opt. Express 21, 29031–29042 (2013).
Guichard, F. et al. Analysis of limitations in divided-pulse nonlinear compression and amplification. IEEE J. Sel. Top. Quantum Electron. 20, 619–623 (2014).
Guichard, F. et al. Coherent combining efficiency in strongly saturated divided-pulse amplification systems. Opt. Express 24, 25329–25336 (2016).
Kienel, M. et al. Energy scaling of femtosecond amplifiers using actively controlled divided-pulse amplification. Opt. Lett. 39, 1049–1052 (2014).
Webb, B. et al. Divided-pulse amplification to the joule level. Opt. Lett. 41, 3106–3109 (2016).
Kienel, M. et al. Multidimensional coherent pulse addition of ultrashort laser pulses. Opt. Lett. 40, 522–525 (2015).
Kienel, M. et al. 12 mJ kW-class ultrafast fiber laser system using multidimensional coherent pulse addition. Opt. Lett. 41, 3343–3346 (2016).
Stark, H. et al. 23 mJ high-power fiber CPA system using electro-optically controlled divided-pulse amplification. Opt. Lett. 44, 5529–5532 (2019).
Stark, H. et al. Electro-optically controlled divided-pulse amplification. Opt. Express 25, 13494–13503 (2017).
Goodno, G. D., Shih, C. C. & Rothenberg, J. E. Perturbative analysis of coherent combining efficiency with mismatched lasers. Opt. Express 18, 25403–25414 (2010).
Kraus, P. M. et al. The ultrafast X-ray spectroscopic revolution in chemical dynamics. Nat. Rev. Chem. 2, 82–94 (2018).
Wu, M. X. et al. Theory of strong-field attosecond transient absorption. J. Phys. B At. Mol. Opt. Phys. 49, 062003 (2016).
Attar, A. R. et al. Femtosecond x-ray spectroscopy of an electrocyclic ring-opening reaction. Science 356, 54–59 (2017).
Wirth, A. et al. Synthesized light transients. Science 334, 195–200 (2011).
Bleotu, P. G. et al. Post-compression of high-energy, sub-picosecond laser pulses. High. Power Laser Sci. Eng. 11, e30 (2023).
Tajima, T., Yan, X. Q. & Ebisuzaki, T. Wakefield acceleration. Rev. Mod. Plasma Phys. 4, 7 (2020).
Kim, J. I. et al. Sub-10 fs pulse generation by post-compression for peak-power enhancement of a 100-TW Ti:Sapphire laser. Opt. Express 30, 8734–8741 (2022).
Ginzburg, V. et al. 11 fs, 1.5 PW laser with nonlinear pulse compression. Opt. Express 29, 28297–28306 (2021).
Wheeler, J. et al. Compressing high energy lasers through optical polymer films. Photonics 9, 715 (2022).
Mourou, G. et al. Single cycle thin film compressor opening the door to Zeptosecond-Exawatt physics. Eur. Phys. J. Spec. Top. 223, 1181–1188 (2014).
Nagy, T., Simon, P. & Veisz, L. High-energy few-cycle pulses: post-compression techniques. Adv. Phys. X 6, 1845795 (2021).
Nisoli, M., De Silvestri, S. & Svelto, O. Generation of high energy 10 fs pulses by a new pulse compression technique. Appl. Phys. Lett. 68, 2793–2795 (1996).
Schenkel, B. et al. Generation of 3.8-fs pulses from adaptive compression of a cascaded hollow fiber supercontinuum. Opt. Lett. 28, 1987–1989 (2003).
Anderson, A. et al. Multi-mJ carrier envelope phase stabilized few-cycle pulses generated by a tabletop laser system. Appl. Phys. B 103, 531–536 (2011).
Cavalieri, A. L. et al. Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua. N. J. Phys. 9, 242–242 (2007).
Wang, P. F. et al. 26 mJ/100 Hz CEP-stable near-single-cycle 4 μm laser based on OPCPA and hollow-core fiber compression. Opt. Lett. 43, 2197–2200 (2018).
Descamps, D. et al. High-power sub-15 fs nonlinear pulse compression at 515 nm of an ultrafast Yb-doped fiber amplifier. Opt. Lett. 46, 1804–1807 (2021).
Fan, G. et al. 70 mJ nonlinear compression and scaling route for an Yb amplifier using large-core hollow fibers. Opt. Lett. 46, 896–899 (2021).
Nisoli, M. Hollow fiber compression technique: a historical perspective. IEEE J. Sel. Top. Quantum Electron. 30, 8900114 (2024).
Nagy, T., Forster, M. & Simon, P. Flexible hollow fiber for pulse compressors. Appl. Opt. 47, 3264–3268 (2008).
Nagy, T. et al. Generation of three-cycle multi-millijoule laser pulses at 318 W average power. Optica 6, 1423–1424 (2019).
Suda, A. et al. Generation of sub-10-fs, 5-mJ-optical pulses using a hollow fiber with a pressure gradient. Appl. Phys. Lett. 86, 111116 (2005).
Chen, X. W. et al. Generation of 4.3 fs, 1 mJ laser pulses via compression of circularly polarized pulses in a gas-filled hollow-core fiber. Opt. Lett. 34, 1588–1590 (2009).
Paulus, G. G. et al. Absolute-phase phenomena in photoionization with few-cycle laser pulses. Nature 414, 182–184 (2001).
Vozzi, C. et al. Optimal spectral broadening in hollow-fiber compressor systems. Appl. Phys. B 80, 285–289 (2005).
Ouillé, M. et al. Relativistic-intensity near-single-cycle light waveforms at kHz repetition rate. Light Sci. Appl. 9, 47 (2020).
Jeong, Y. G. et al. Direct compression of 170-fs 50-cycle pulses down to 1.5 cycles with 70% transmission. Sci. Rep. 8, 11794 (2018).
Silva, F. et al. Strategies for achieving intense single-cycle pulses with in-line post-compression setups. Opt. Lett. 43, 337–340 (2018).
Travers, J. C. Optical solitons in hollow-core fibres. Opt. Commun. 555, 130191 (2024).
Brahms, C., Belli, F. & Travers, J. C. Infrared attosecond field transients and UV to IR few-femtosecond pulses generated by high-energy soliton self-compression. Phys. Rev. Res. 2, 043037 (2020).
Heinzerling, A. M. et al. Field-resolved attosecond solitons. Nat. Photonics 19, 772–777 (2025).
Kotsina, N. et al. Extreme soliton dynamics for terawatt-scale optical attosecond pulses and 30 GW-scale sub-3 fs far-ultraviolet pulses. In Proc. 2025 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference. 1 (IEEE, 2025).
Piccoli, R. et al. Intense few-cycle visible pulses directly generated via nonlinear fibre mode mixing. Nat. Photonics 15, 884–889 (2021).
Hädrich, S. et al. Energetic sub-2-cycle laser with 216 W average power. Opt. Lett. 41, 4332–4335 (2016).
Voronin, A. A. et al. Subexawatt few-cycle lightwave generation via multipetawatt pulse compression. Opt. Commun. 291, 299–303 (2013).
Lu, C. H. et al. Generation of intense supercontinuum in condensed media. Optica 1, 400–406 (2014).
Lu, C. H. et al. Generation of intense supercontinuum in condensed media. In Proc. 2015 European Conference on Lasers and Electro-Optics – European Quantum Electronics Conference (Optica Publishing Group, 2015).
Lu, C. H. et al. Multi-plate generation and compression of an intense supercontinuum pulse. In Proc. High Intensity Lasers and High Field Phenomena 2016 (Optica Publishing Group, 2016).
Fibich, G. & Gaeta, A. L. Critical power for self-focusing in bulk media and in hollow waveguides. Opt. Lett. 25, 335–337 (2000).
Centurion, M. et al. Nonlinearity management in optics: experiment, theory, and simulation. Phys. Rev. Lett. 97, 033903 (2006).
Cheng, Y. C. et al. Supercontinuum generation in a multi-plate medium. Opt. Express 24, 7224–7231 (2016).
Zhang, S. et al. Solitary beam propagation in periodic layered Kerr media enables high-efficiency pulse compression and mode self-cleaning. Light Sci. Appl. 10, 53 (2021).
Seo, M. et al. High-contrast, intense single-cycle pulses from an all thin-solid-plate setup. Opt. Lett. 45, 367–370 (2020).
Lu, C. H. et al. Greater than 50 times compression of 1030 nm Yb:KGW laser pulses to single-cycle duration. Opt. Express 27, 15638–15648 (2019).
Lu, X. M. & Leng, Y. X. Demonstration of contrast improvement and spectral broadening in thin solid plates. Opt. Lett. 46, 5108–5111 (2021).
Okamoto, T. et al. Operation at 1 MHz of 1.7-cycle multiple plate compression at 35-W average output power. Opt. Lett. 48, 2579–2582 (2023).
He, P. et al. High-efficiency supercontinuum generation in solid thin plates at 0.1 TW level. Opt. Lett. 42, 474–477 (2017).
Lu, C. H. et al. Sub-4 fs laser pulses at high average power and high repetition rate from an all-solid-state setup. Opt. Express 26, 8941–8956 (2018).
Yan, L. et al. Generation of high-power, high repetition rate, subpicosecond pulses by intracavity chirped pulse regenerative amplification. Appl. Phys. Lett. 54, 690–692 (1989).
Yan, L. & Lee, C. H. Self-phase modulation and spatial chirping in a regenerative amplifier. In Proc. Conference on Lasers and Electro-Optics (Optica Publishing Group, 1991).
Yan, L., Liu, Y. Q. & Lee, C. H. Pulse temporal and spatial chirping by a bulk Kerr medium in a regenerative amplifier. IEEE J. Quantum Electron. 30, 2194–2202 (1994).
Milosevic, N., Tempea, G. & Brabec, T. Optical pulse compression: bulk media versus hollow waveguides. Opt. Lett. 25, 672–674 (2000).
Herriott, D., Kogelnik, H. & Kompfner, R. Off-axis paths in spherical mirror interferometers. Appl. Opt. 3, 523–526 (1964).
Roland, G. et al. Verfahren und anordung zur spektralen verbreiterung von laserpulsen für die nichtlineare pulskompression. (2015).
Russbueldt, P. et al. Innoslab amplifiers. IEEE J. Sel. Top. Quantum Electron. 21, 447–463 (2015).
Schulte, J. et al. Nonlinear pulse compression in a multi-pass cell. Opt. Lett. 41, 4511–4514 (2016).
Hanna, M. et al. Nonlinear temporal compression in multipass cells: theory. J. Opt. Soc. Am. B 34, 1340–1347 (2017).
Weitenberg, J. et al. Multi-pass-cell-based nonlinear pulse compression to 115 fs at 7.5 µJ pulse energy and 300 W average power. Opt. Express 25, 20502–20510 (2017).
Weitenberg, J. et al. Nonlinear pulse compression to sub-40 fs at 4.5 uJ pulse energy by multi-pass-cell spectral broadening. IEEE J. Quantum Electron. 53, 8600204 (2017).
Viotti, A. L. et al. Few-cycle pulse generation by double-stage hybrid multi-pass multi-plate nonlinear pulse compression. Opt. Lett. 48, 984–987 (2023).
Fritsch, K. et al. All-solid-state multipass spectral broadening to sub-20 fs. Opt. Lett. 43, 4643–4646 (2018).
Omar, A. et al. Spectral broadening of 2-mJ femtosecond pulses in a compact air-filled convex–concave multi-pass cell. Opt. Lett. 48, 1458–1461 (2023).
Russbueldt, P. et al. Scalable 30 fs laser source with 530 W average power. Opt. Lett. 44, 5222–5225 (2019).
Ueffing, M. et al. Nonlinear pulse compression in a gas-filled multipass cell. Opt. Lett. 43, 2070–2073 (2018).
Lavenu, L. et al. Nonlinear pulse compression based on a gas-filled multipass cell. Opt. Lett. 43, 2252–2255 (2018).
Kaumanns, M. et al. Multipass spectral broadening of 18 mJ pulses compressible from 1.3 ps to 41 fs. Opt. Lett. 43, 5877–5880 (2018).
Goncharov, S., Fritsch, K. & Pronin, O. Few-cycle pulse compression and white light generation in cascaded multipass cells. Opt. Lett. 48, 147–150 (2023).
Kaumanns, M. et al. Spectral broadening of 112 mJ, 1.3 ps pulses at 5 kHz in a LG10 multipass cell with compressibility to 37 fs. Opt. Lett. 46, 929–932 (2021).
Grebing, C. et al. Kilowatt-average-power compression of millijoule pulses in a gas-filled multi-pass cell. Opt. Lett. 45, 6250–6253 (2020).
Balla, P. et al. Postcompression of picosecond pulses into the few-cycle regime. Opt. Lett. 45, 2572–2575 (2020).
Rajhans, S. et al. Post-compression of multi-millijoule picosecond pulses to few-cycles approaching the terawatt regime. Opt. Lett. 48, 4753–4756 (2023).
Hädrich, S. et al. Carrier-envelope phase stable few-cycle laser system delivering more than 100W, 1mJ, sub-2-cycle pulses. Opt. Lett. 47, 1537–1540 (2022).
Heyl, C. M. et al. High-energy bow tie multi-pass cells for nonlinear spectral broadening applications. J. Phys. Photonics 4, 014002 (2022).
Viotti, A. L. et al. Multi-pass cells for post-compression of ultrashort laser pulses. Optica 9, 197–216 (2022).
Lavenu, L. et al. High-power two-cycle ultrafast source based on hybrid nonlinear compression. Opt. Express 27, 1958–1967 (2019).
Daniault, L. et al. Single-stage few-cycle nonlinear compression of milliJoule energy Ti:Sa femtosecond pulses in a multipass cell. Opt. Lett. 46, 5264–5267 (2021).
Barbiero, G. et al. Efficient nonlinear compression of a thin-disk oscillator to 8.5 fs at 55 W average power. Opt. Lett. 46, 5304–5307 (2021).
Baltuška, A., Fuji, T. & Kobayashi, T. Visible pulse compression to 4 fs by optical parametric amplification and programmable dispersion control. Opt. Lett. 27, 306–308 (2002).
Cerullo, G. et al. Few-optical-cycle light pulses with passive carrier-envelope phase stabilization. Laser Photonics Rev. 5, 323–351 (2011).
Rothhardt, J. et al. Octave-spanning OPCPA system delivering CEP-stable few-cycle pulses and 22 W of average power at 1 MHz repetition rate. Opt. Express 20, 10870–10878 (2012).
Leblanc, A. et al. High-field mid-infrared pulses derived from frequency domain optical parametric amplification. Opt. Lett. 45, 2267–2270 (2020).
Cox, J. A. et al. Pulse synthesis in the single-cycle regime from independent mode-locked lasers using attosecond-precision feedback. Opt. Lett. 37, 3579–3581 (2012).
Krauss, G. et al. Synthesis of a single cycle of light with compact erbium-doped fibre technology. Nat. Photonics 4, 33–36 (2010).
Manzoni, C. et al. Coherent synthesis of ultra-broadband optical parametric amplifiers. Opt. Lett. 37, 1880–1882 (2012).
Cirmi, G. et al. Optical waveform synthesis and its applications. Laser Photonics Rev. 17, 2200588 (2023).
Manzoni, C. et al. Coherent pulse synthesis: towards sub-cycle optical waveforms. Laser Photonics Rev. 9, 129–171 (2015).
Reichert, J. et al. Measuring the frequency of light with mode-locked lasers. Opt. Commun. 172, 59–68 (1999).
Jones, D. J. et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 288, 635–639 (2000).
Telle, H. R. et al. Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation. Appl. Phys. B 69, 327–332 (1999).
Lee, Y. S. et al. Novel method for carrier-envelope-phase stabilization of femtosecond laser pulses. Opt. Express 13, 2969–2976 (2005).
Rausch, S. et al. Few-cycle oscillator pulse train with constant carrier-envelope- phase and 65 as jitter. Opt. Express 17, 20282–20290 (2009).
Koke, S. et al. Direct frequency comb synthesis with arbitrary offset and shot-noise-limited phase noise. Nat. Photonics 4, 462–465 (2010).
Nakamura, K. et al. Offset-free all-fiber frequency comb with an acousto-optic modulator and two f–2f interferometers. Appl. Phys. Express 10, 072501 (2017).
Okubo, S. et al. Offset-free optical frequency comb self-referencing with an f-2f interferometer. Optica 5, 188–192 (2018).
Kakehata, M. et al. Single-shot measurement of carrier-envelope phase changes by spectral interferometry. Opt. Lett. 26, 1436–1438 (2001).
Shestaev, E. et al. Carrier-envelope offset stable, coherently combined ytterbium-doped fiber CPA delivering 1 kW of average power. Opt. Lett. 45, 6350–6353 (2020).
Fuji, T., Apolonski, A. & Krausz, F. Self-stabilization of carrier-envelope offset phase by use of difference-frequency generation. Opt. Lett. 29, 632–634 (2004).
Fuji, T. et al. Attosecond control of optical waveforms. N. J. Phys. 7, 116 (2005).
Fuji, T. et al. Monolithic carrier-envelope phase-stabilization scheme. Opt. Lett. 30, 332–334 (2005).
Morgner, U. et al. Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime. Phys. Rev. Lett. 86, 5462–5465 (2001).
Ramond, T. M. et al. Phase-coherent link from optical to microwave frequencies by means of the broadband continuum from a 1-GHz Ti:sapphire femtosecond oscillator. Opt. Lett. 27, 1842–1844 (2002).
Hitachi, K. et al. Carrier-envelope offset locking with a 2f-to-3f self-referencing interferometer using a dual-pitch PPLN ridge waveguide. Opt. Express 22, 1629–1635 (2014).
Ranka, J. K., Windeler, R. S. & Stentz, A. J. Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm. Opt. Lett. 25, 25–27 (2000).
Vasilyev, S. et al. Octave-spanning Cr:ZnS femtosecond laser with intrinsic nonlinear interferometry. Optica 6, 126–127 (2019).
Steinleitner, P. et al. Single-cycle infrared waveform control. Nat. Photonics 16, 512–518 (2022).
Guo, C. et al. Single-shot, high-repetition rate carrier-envelope-phase detection of ultrashort laser pulses. Opt. Lett. 48, 5431–5434 (2023).
Osvay, K. et al. Bandwidth-independent linear method for detection of the carrier-envelope offset phase. Opt. Lett. 32, 3095–3097 (2007).
Fortier, T. M. et al. Carrier-envelope phase-controlled quantum interference of injected photocurrents in semiconductors. Phys. Rev. Lett. 92, 147403 (2004).
Roos, P. A. et al. Solid-state carrier-envelope phase stabilization via quantum interference control of injected photocurrents. Opt. Lett. 30, 735–737 (2005).
Apolonski, A. et al. Observation of light-phase-sensitive photoemission from a metal. Phys. Rev. Lett. 92, 073902 (2004).
Krüger, M., Schenk, M. & Hommelhoff, P. Attosecond control of electrons emitted from a nanoscale metal tip. Nature 475, 78–81 (2011).
Piglosiewicz, B. et al. Carrier-envelope phase effects on the strong-field photoemission of electrons from metallic nanostructures. Nat. Photonics 8, 37–42 (2014).
Dietrich, P., Krausz, F. & Corkum, P. B. Determining the absolute carrier phase of a few-cycle laser pulse. Opt. Lett. 25, 16–18 (2000).
Schätzel, M. G. et al. Long-term stabilization of the carrier-envelope phase of few-cycle laser pulses. Appl. Phys. B 79, 1021–1025 (2004).
Kreß, M. et al. Determination of the carrier-envelope phase of few-cycle laser pulses with terahertz-emission spectroscopy. Nat. Phys. 2, 327–331 (2006).
Wittmann, T. et al. Single-shot carrier–envelope phase measurement of few-cycle laser pulses. Nat. Phys. 5, 357–362 (2009).
Debrah, D. A. et al. Direct in–situ single-shot measurements of the absolute carrier-envelope phases of ultrashort pulses. Opt. Lett. 44, 3582–3585 (2019).
Kubullek, M. et al. Single-shot carrier–envelope-phase measurement in ambient air. Optica 7, 35–39 (2020).
Goulielmakis, E. et al. Direct measurement of light waves. Science 305, 1267–1269 (2004).
Schiffrin, A. et al. Optical-field-induced current in dielectrics. Nature 493, 70–74 (2013).
Paasch-Colberg, T. et al. Solid-state light-phase detector. Nat. Photonics 8, 214–218 (2014).
Keiber, S. et al. Electro-optic sampling of near-infrared waveforms. Nat. Photonics 10, 159–162 (2016).
Park, S. B. et al. Direct sampling of a light wave in air. Optica 5, 402–408 (2018).
Sederberg, S. et al. Attosecond optoelectronic field measurement in solids. Nat. Commun. 11, 430 (2020).
Korobenko, A. et al. Femtosecond streaking in ambient air. Optica 7, 1372–1376 (2020).
Zimin, D. et al. Petahertz-scale nonlinear photoconductive sampling in air. Optica 8, 586–590 (2021).
Altwaijry, N. et al. Sensitivity enhancement in photoconductive light field sampling. Adv. Opt. Mater. 12, 2302490 (2024).
Rybka, T. et al. Sub-cycle optical phase control of nanotunnelling in the single-electron regime. Nat. Photonics 10, 667–670 (2016).
Putnam, W. P. et al. Optical-field-controlled photoemission from plasmonic nanoparticles. Nat. Phys. 13, 335–339 (2017).
Bionta, M. R. et al. On-chip sampling of optical fields with attosecond resolution. Nat. Photonics 15, 456–460 (2021).
Yang, Y. J. et al. Light phase detection with on-chip petahertz electronic networks. Nat. Commun. 11, 3407 (2020).
Keathley, P. D. et al. Vanishing carrier-envelope-phase-sensitive response in optical-field photoemission from plasmonic nanoantennas. Nat. Phys. 15, 1128–1133 (2019).
Liu, Y. Y. et al. Single-shot measurement of few-cycle optical waveforms on a chip. Nat. Photonics 16, 109–112 (2022).
Hanus, V. et al. Carrier-envelope phase on-chip scanner and control of laser beams. Nat. Commun. 14, 5068 (2023).
Ritzkowsky, F. et al. On-chip petahertz electronics for single-shot phase detection. Nat. Commun. 15, 10179 (2024).
Udem, T. et al. Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser. Phys. Rev. Lett. 82, 3568–3571 (1999).
Kwong, K. F. et al. 400-Hz mechanical scanning optical delay line. Opt. Lett. 18, 558–560 (1993).
Holman, K. W. et al. Intensity-related dynamics of femtosecond frequency combs. Opt. Lett. 28, 851–853 (2003).
Goldovsky, D., Jouravsky, V. & Pe’er, A. Simple and robust phase-locking of optical cavities with >200 KHz servo-bandwidth using a piezo-actuated mirror mounted in soft materials. Opt. Express 24, 28239–28246 (2016).
Nakamura, T. et al. Piezo-electric transducer actuated mirror with a servo bandwidth beyond 500 kHz. Opt. Express 28, 16118–16125 (2020).
Poppe, A. et al. Few-cycle optical waveform synthesis. Appl. Phys. B 72, 373–376 (2001).
Braje, D. A. et al. Astronomical spectrograph calibration with broad-spectrum frequency combs. Eur. Phys. J. D. 48, 57–66 (2008).
McFerran, J. J. et al. Suppression of pump-induced frequency noise in fiber-laser frequency combs leading to sub-radian fceo phase excursions. Appl. Phys. B 86, 219–227 (2007).
Balčiūnas, T. et al. Carrier envelope phase stabilization of a Yb:KGW laser amplifier. Opt. Lett. 36, 3242–3244 (2011).
Rauschenberger, J. et al. Control of the frequency comb from a modelocked Erbium-doped fiber laser. Opt. Express 10, 1404–1410 (2002).
Seidel, M. et al. Carrier-envelope-phase stabilization via dual wavelength pumping. Opt. Lett. 41, 1853–1856 (2016).
Karlen, L. et al. Efficient carrier-envelope offset frequency stabilization through gain modulation via stimulated emission. Opt. Lett. 41, 376–379 (2016).
Xu, L. et al. Route to phase control of ultrashort light pulses. Opt. Lett. 21, 2008–2010 (1996).
Endo, M., Shoji, T. D. & Schibli, T. R. Ultralow noise optical frequency combs. IEEE J. Sel. Top. Quantum Electron. 24, 1102413 (2018).
Kowalczyk, M. et al. Ultra-CEP-stable single-cycle pulses at 2.2 µm. Optica 10, 801–811 (2023).
Lee, C. C. et al. Frequency comb stabilization with bandwidth beyond the limit of gain lifetime by an intracavity graphene electro-optic modulator. Opt. Lett. 37, 3084–3086 (2012).
Pronin, O. et al. High-power multi-megahertz source of waveform-stabilized few-cycle light. Nat. Commun. 6, 6988 (2015).
Hoffmann, M., Schilt, S. & Südmeyer, T. CEO stabilization of a femtosecond laser using a SESAM as fast opto-optical modulator. Opt. Express 21, 30054–30064 (2013).
Lücking, F. et al. Long-term carrier-envelope-phase-stable few-cycle pulses by use of the feed-forward method. Opt. Lett. 37, 2076–2078 (2012).
Lemons, R. et al. Carrier-envelope phase stabilization of an Er:Yb:glass laser via a feed-forward technique. Opt. Lett. 44, 5610–5613 (2019).
Hirschman, J. et al. Long-term hybrid stabilization of the carrier-envelope phase. Opt. Express 28, 34093–34103 (2020).
Baltuska, A. et al. Phase-controlled amplification of few-cycle laser pulses. IEEE J. Sel. Top. Quantum Electron. 9, 972–989 (2003).
Wang, H. et al. Coupling between energy and phase in hollow-core fiber based f-to-2f interferometers. Opt. Express 17, 12082–12089 (2009).
Wang, H. et al. Carrier–envelope phase stabilization of 5-fs, 0.5-mJ pulses from adaptive phase modulator. Appl. Phys. B 98, 291–294 (2010).
Moon, E. et al. Advances in carrier-envelope phase stabilization of grating-based chirped-pulse amplifiers. Laser Photonics Rev. 4, 160–177 (2010).
Chang, Z. H. Carrier-envelope phase shift caused by grating-based stretchers and compressors. Appl. Opt. 45, 8350–8353 (2006).
Tournois, P. Acousto-optic programmable dispersive filter for adaptive compensation of group delay time dispersion in laser systems. Opt. Commun. 140, 245–249 (1997).
Canova, L. et al. Carrier-envelope phase stabilization and control using a transmission grating compressor and an AOPDF. Opt. Lett. 34, 1333–1335 (2009).
Crozatier, V., Forget, N. & Oksenhendler, T. Towards single shot carrier-envelope phase stabilization for multi kHz ultrafast amplifiers. In Proc. 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (IEEE, 2011).
Verluise, F. et al. Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping. Opt. Lett. 25, 575–577 (2000).
Gobert, O. et al. Carrier-envelope phase control using linear electro-optic effect. Opt. Express 19, 5410–5418 (2011).
Hergott, J. F. et al. Carrier-envelope phase stabilization of a 20 W, grating based, chirped-pulse amplified laser, using electro-optic effect in a LiNbO₃ crystal. Opt. Express 19, 19935–19941 (2011).
Natile, M. et al. CEP-stable high-energy ytterbium-doped fiber amplifier. Opt. Lett. 44, 3909–3912 (2019).
Balčiūnas, T. et al. Direct carrier-envelope phase control of an amplified laser system. Opt. Lett. 39, 1669–1672 (2014).
Baltuška, A., Fuji, T. & Kobayashi, T. Controlling the carrier-envelope phase of ultrashort light pulses with optical parametric amplifiers. Phys. Rev. Lett. 88, 133901 (2002).
Adachi, S., Kumbhakar, P. & Kobayashi, T. Quasi-monocyclic near-infrared pulses with a stabilized carrier-envelope phase characterized by noncollinear cross-correlation frequency-resolved optical gating. Opt. Lett. 29, 1150–1152 (2004).
Shan, B. & Chang, Z. H. Dramatic extension of the high-order harmonic cutoff by using a long-wavelength driving field. Phys. Rev. A 65, 011804 (2001).
Zhao, K. et al. Tailoring a 67 attosecond pulse through advantageous phase-mismatch. Opt. Lett. 37, 3891–3893 (2012).
Johnson, A. S. et al. High-flux soft x-ray harmonic generation from ionization-shaped few-cycle laser pulses. Sci. Adv. 4, eaar3761 (2018).
Teichmann, S. M. et al. 0.5-keV Soft X-ray attosecond continua. Nat. Commun. 7, 11493 (2016).
Colosimo, P. et al. Scaling strong-field interactions towards the classical limit. Nat. Phys. 4, 386–389 (2008).
Tate, J. et al. Scaling of wave-packet dynamics in an intense midinfrared field. Phys. Rev. Lett. 98, 013901 (2007).
Mairesse, Y. et al. Attosecond synchronization of high-harmonic soft x-rays. Science 302, 1540–1543 (2003).
Danielius, R. et al. Traveling-wave parametric generation of widely tunable, highly coherent femtosecond light pulses. J. Opt. Soc. Am. B 10, 2222–2232 (1993).
Cerullo, G. & De Silvestri, S. Ultrafast optical parametric amplifiers. Rev. Sci. Instrum. 74, 1–18 (2003).
Manzoni, C. et al. Generation of high-energy self-phase-stabilized pulses by difference-frequency generation followed by optical parametric amplification. Opt. Lett. 31, 963–965 (2006).
Hauri, C. P. et al. Intense self-compressed, self-phase-stabilized few-cycle pulses at 2 μm from an optical filament. Opt. Lett. 32, 868–870 (2007).
Vozzi, C. et al. Characterization of a high-energy self-phase-stabilized near-infrared parametric source. J. Opt. Soc. Am. B 25, B112–B117 (2008).
Giguère, M. et al. Pulse compression of submillijoule few-optical-cycle infrared laser pulses using chirped mirrors. Opt. Lett. 34, 1894–1896 (2009).
Ishii, N. et al. Generation of ultrashort intense optical pulses at 1.6 μm from a bismuth triborate-based optical parametric chirped pulse amplifier with carrier-envelope phase stabilization. J. Opt. 17, 094001 (2015).
Seeger, M. F. et al. 49 W carrier-envelope-phase-stable few-cycle 2.1 µm OPCPA at 10 kHz. Opt. Express 31, 24821–24834 (2023).
Fu, Y. X. et al. TW-scale mid-infrared pulses near 3.3 μm directly generated by dual-chirped optical parametric amplification. Appl. Phys. Lett. 112, 241105 (2018).
Ishii, N. et al. Sub-two-cycle, carrier-envelope phase-stable, intense optical pulses at 1.6 μm from a BiB3O6 optical parametric chirped-pulse amplifier. Opt. Lett. 37, 4182–4184 (2012).
Chen, C. T. et al. New nonlinear-optical crystal: LiB3O5. J. Opt. Soc. Am. B 6, 616–621 (1989).
Zeng, X. M. et al. Multi-petawatt laser facility fully based on optical parametric chirsped-pulse amplification. Opt. Lett. 42, 2014–2017 (2017).
Chen, C. T. et al. A new-type ultraviolet SHG crystal—β-BaB2O4. Sci. China Ser. B Chem. Biol. Agric. Med. Earth Sci. 28, 235–243 (1985).
Hong, K. H. et al. High-energy, phase-stable, ultrabroadband kHz OPCPA at 21 μm pumped by a picosecond cryogenic Yb:YAG laser. Opt. Express 19, 15538–15548 (2011).
Andriukaitis, G. et al. 90 GW peak power few-cycle mid-infrared pulses from an optical parametric amplifier. Opt. Lett. 36, 2755–2757 (2011).
Fan, G. et al. Hollow-core-waveguide compression of multi-millijoule CEP-stable 3.2 μm pulses. Optica 3, 1308–1311 (2016).
Chen, Y. et al. Generation of high beam quality, high-energy and broadband tunable mid-infrared pulse from a KTA optical parametric amplifier. Opt. Commun. 365, 7–13 (2016).
Thiré, N. et al. Highly stable, 15 W, few-cycle, 65 mrad CEP-noise mid-IR OPCPA for statistical physics. Opt. Express 26, 26907–26915 (2018).
Li, J. et al. 53-attosecond X-ray pulses reach the carbon K-edge. Nat. Commun. 8, 186 (2017).
Boyd, G. D., Buehler, E. & Storz, F. G. Linear and nonlinear optical properties of ZnGeP2 and CdSe. Appl. Phys. Lett. 18, 301–304 (1971).
Sanchez, D. et al. 7 μm, ultrafast, sub-millijoule-level mid-infrared optical parametric chirped pulse amplifier pumped at 2 μm. Optica 3, 147–150 (2016).
Liang, H. K. et al. Octave-spanning 6-µm OPA pumped by 2.1-µm OPCPA. In Proc. High-Brightness Sources and Light-Driven Interactions (Optica Publishing Group, 2016).
Von Grafenstein, L. et al. 5 μm few-cycle pulses with multi-gigawatt peak power at a 1 kHz repetition rate. Opt. Lett. 42, 3796–3799 (2017).
Mirov, S. B. et al. Frontiers of mid-IR lasers based on transition metal doped chalcogenides. IEEE J. Sel. Top. Quantum Electron. 24, 1601829 (2018).
Schunemann, P. G. et al. Advances in nonlinear optical crystals for mid-infrared coherent sources. J. Opt. Soc. Am. B 33, D36–D43 (2016).
Petrov, V. Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals. Prog. Quantum Electron. 42, 1–106 (2015).
Vaupel, A. et al. Concepts, performance review, and prospects of table-top, few-cycle optical parametric chirped-pulse amplification. Opt. Eng. 53, 051507 (2013).
Hemmer, M. et al. 2-μm wavelength, high-energy Ho:YLF chirped-pulse amplifier for mid-infrared OPCPA. Opt. Lett. 40, 451–454 (2015).
von Grafenstein, L. et al. Ho:YLF chirped pulse amplification at kilohertz repetition rates – 4.3 ps pulses at 2 μm with GW peak power. Opt. Lett. 41, 4668–4671 (2016).
Isaenko, L. et al. Growth and properties of LiGaX2 (X = S, Se, Te) single crystals for nonlinear optical applications in the mid-IR. Cryst. Res. Technol. 38, 379–387 (2003).
Qu, S. Z. et al. 9 μm few-cycle optical parametric chirped-pulse amplifier based on LiGaS2. Opt. Lett. 44, 2422–2425 (2019).
Wilson, D. J. et al. An intense, few-cycle source in the long-wave infrared. Sci. Rep. 9, 6002 (2019).
Rotermund, F., Petrov, V. & Noack, F. Difference-frequency generation of intense femtosecond pulses in the mid-IR (4-12 μm) using HgGa2S4 and AgGaS2. Opt. Commun. 185, 177–183 (2000).
Gu, X. B. et al. Difference-frequency generation of 0.2-mJ 3-cycle 9-µm pulses from two 1-kHz multicycle OPCPAs. Laser Photonics Rev. 19, 2400507 (2025).
Kaindl, R. A. et al. Generation, shaping, and characterization of intense femtosecond pulses tunable from 3 to 20 µm. J. Opt. Soc. Am. B 17, 2086–2094 (2000).
Junginger, F. et al. Single-cycle multiterahertz transients with peak fields above 10 MV/cm. Opt. Lett. 35, 2645–2647 (2010).
Babzien, M., Pogorelsky, I. V. & Polanskiy, M. Solid-state seeding of a high power picosecond carbon dioxide laser. AIP Conf. Proc. 1777, 110001 (2016).
Duda, M. et al. 10-µJ few-cycle 12-µm source based on difference-frequency generation driven by a 1-kHz mid-wave infrared OPCPA. Opt. Lett. 47, 2891–2894 (2022).
Budriūnas, R. et al. Long seed, short pump: converting Yb-doped laser radiation to multi-µJ few-cycle pulses tunable through 2.5-15 µm. Opt. Express 30, 13009–13023 (2022).
Novák, O. et al. Femtosecond 8.5 μm source based on intrapulse difference-frequency generation of 2.1 μm pulses. Opt. Lett. 43, 1335–1338 (2018).
Pupeza, I. et al. High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate. Nat. Photonics 9, 721–724 (2015).
Reimann, K. et al. Direct field-resolved detection of terahertz transients with amplitudes of megavolts per centimeter. Opt. Lett. 28, 471–473 (2003).
Liu, K. et al. Microjoule sub-two-cycle mid-infrared intrapulse-DFG Driven by 3-μm OPCPA. IEEE Photonics Technol. Lett. 31, 1741–1744 (2019).
Bournet, Q. et al. Inline amplification of mid-infrared intrapulse difference frequency generation. Opt. Lett. 47, 4885–4888 (2022).
Liu, K. et al. High-energy mid-infrared intrapulse difference-frequency generation with 5.3% conversion efficiency driven at 3 µm. Opt. Express 27, 37706–37713 (2019).
Eickemeyer, F. et al. Controlled shaping of ultrafast electric field transients in the mid-infrared spectral range. Opt. Lett. 25, 1472–1474 (2000).
Witte, T., Kompa, K. L. & Motzkus, M. Femtosecond pulse shaping in the mid infrared by difference-frequency mixing. Appl. Phys. B 76, 467–471 (2003).
Krogen, P. et al. Generation and multi-octave shaping of mid-infrared intense single-cycle pulses. Nat. Photonics 11, 222–226 (2017).
Bock, M. et al. Pulse shaping in a midwave-IR OPCPA for multi-µJ few-cycle pulse generation at 12 µm via DFG. Opt. Express 31, 14096–14108 (2023).
Ren, X. M. et al. Generation of 1 kHz, 2.3 mJ, 88 fs, 2.5 μm pulses from a Cr2+:ZnSe chirped pulse amplifier. Opt. Lett. 43, 3381–3384 (2018).
Leshchenko, V. E. et al. High-power few-cycle Cr:ZnSe mid-infrared source for attosecond soft x-ray physics. Optica 7, 981–988 (2020).
Wu, Y. et al. Generation of few-cycle multi-millijoule 2.5 μm pulses from a single-stage Cr2+:ZnSe amplifier. Sci. Rep. 10, 7775 (2020).
Migal, E. et al. 3.5-mJ 150-fs Fe:ZnSe hybrid mid-IR femtosecond laser at 4.4 μm for driving extreme nonlinear optics. Opt. Lett. 44, 2550–2553 (2019).
Slobodchikov, E., Chieffo, L. R. & Wall, K. F. High peak power ultrafast Cr:ZnSe oscillator and power amplifier. In Proc. SPIE 9726, Solid State Lasers XXV: Technology and Devices 972603 (SPIE, 2016).
Vasilyev, S. et al. 1.5-mJ Cr:ZnSe chirped pulse amplifier seeded by a Kerr-Lens mode-locked Cr:ZnS oscillator. In Proc. Laser Congress (Optica Publishing Group, 2019).
Page, R. H. et al. Demonstrations of diode – pumped and grating – tuned ZnSe:Cr2+ lasers. In Proc. Advanced Solid State Lasers (Optica Publishing Group, 1997).
Slobodtchikov, E. U. & Moulton, P. F. Progress in ultrafast Cr:ZnSe lasers. In Proc. Advanced Solid-State Photonics (Optica Publishing Group, 2012).
Nagl, N. et al. Directly diode-pumped, Kerr-lens mode-locked, few-cycle Cr:ZnSe oscillator. Opt. Express 27, 24445–24454 (2019).
Qu, S. Z. et al. Directly diode-pumped femtosecond Cr:ZnS amplifier with ultra-low intensity noise. Opt. Lett. 47, 6217–6220 (2022).
Sorokina, I. T., Sorokin, E. & Carrig, T. J. Femtosecond pulse generation from a SESAM mode-locked Cr:ZnSe laser. In Proc. 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference1–2 (IEEE, 2006).
Vasilyev, S. et al. Mid-IR Kerr-lens mode-locked polycrystalline Cr2+:ZnS lasers. In Proc. SPIE 9835, Ultrafast Bandgap Photonics (SPIE, 2016).
Vasilyev, S. et al. Kerr-lens mode-locked Cr:ZnS oscillator reaches the spectral span of an optical octave. Opt. Express 29, 2458–2465 (2021).
Vasilyev, S. et al. Multi-Watt mid-IR femtosecond polycrystalline Cr2+:ZnS and Cr2+:ZnSe laser amplifiers with the spectrum spanning 20-26 µm. Opt. Express 24, 1616–1623 (2016).
Vasilyev, S. et al. Three optical cycle mid-IR Kerr-lens mode-locked polycrystalline Cr2+:ZnS laser. Opt. Lett. 40, 5054–5057 (2015).
Vasilyev, S. et al. Ultrafast middle-IR lasers and amplifiers based on polycrystalline Cr:ZnS and Cr:ZnSe. Opt. Mater. Express 7, 2636–2650 (2017).
Vasilyev, S. et al. Middle-IR frequency comb based on Cr:ZnS laser. Opt. Express 27, 35079–35087 (2019).
Vasilyev, S. et al. Kerr-Lens mode-locked middle IR polycrystalline Cr:ZnS laser with a repetition rate 1.2 GHz. In Proc. Advanced Solid State Lasers (Optica Publishing Group, 2016).
Barh, A. et al. High-power low-noise 2-GHz femtosecond laser oscillator at 2.4 µm. Opt. Express 30, 5019–5025 (2022).
Vasilyev, S. et al. 27 Watt middle-IR femtosecond laser system at 2.4 μm. In Proc. Advanced Solid State Lasers (Optica Publishing Group, 2018).
Evans, J. W., Berry, P. A. & Schepler, K. L. 840 mW continuous-wave Fe:ZnSe laser operating at 4140 nm. Opt. Lett. 37, 5021–5023 (2012).
Evans, J. W., Sanamyan, T. & Berry, P. A. A continuous wave Fe:ZnSe laser pumped by efficient Er:Y2O3 laser. In Proc. SPIE 9342, Solid State Lasers XXIV: Technology and Devices (SPIE, 2015).
Mirov, S. B. et al. Progress in mid-IR lasers based on Cr and Fe-doped II-VI chalcogenides. IEEE J. Sel. Top. Quantum Electron. 21, 292–310 (2015).
Martyshkin, D. V. et al. High power (9.2 W) CW 4.15 µm Fe:ZnSe laser. In Proc. 2017 Conference on Lasers and Electro-Optics (IEEE, 2014).
Pushkin, A. V. et al. Compact, highly efficient, 2.1-W continuous-wave mid-infrared Fe:ZnSe coherent source, pumped by an Er:ZBLAN fiber laser. Opt. Lett. 43, 5941–5944 (2018).
Pushkin, A. V. et al. Femtosecond graphene mode-locked Fe:ZnSe laser at 4.4 µm. Opt. Lett. 45, 738–741 (2020).
L’Huillier, A. et al. Applications of high-order harmonics. Eur. Phys. J. D At., Mol., Opt. Plasma Phys. 26, 91–98 (2003).
Schultze, M. et al. State-of-the-art attosecond metrology. J. Electron Spectrosc. Relat. Phenom. 184, 68–77 (2011).
Brunner, C. et al. Deep learning in attosecond metrology. Opt. Express 30, 15669–15684 (2022).
Guan, F. Y. et al. AI-enabled universal image-spectrum fusion spectroscopy based on self-supervised plasma modeling. Adv. Photonics Nexus 3, 066014 (2024).
Zhang, D. et al. A plasma-image-assisted method for matrix effect correction in laser-induced breakdown spectroscopy. Anal. Chim. Acta 1107, 14–22 (2020).
Mikaelsson, S. et al. A high-repetition rate attosecond light source for time-resolved coincidence spectroscopy. Nanophotonics 10, 117–128 (2020).
Buss, J. H. et al. A setup for extreme-ultraviolet ultrafast angle-resolved photoelectron spectroscopy at 50-kHz repetition rate. Rev. Sci. Instrum. 90, 023105 (2019).
Ye, P. et al. High-flux 100 kHz attosecond pulse source driven by a high-average power annular laser beam. Ultrafast Sci. 2022, 9823783 (2022).
Pupeza, I. et al. Extreme-ultraviolet frequency combs for precision metrology and attosecond science. Nat. Photonics 15, 175–186 (2021).
Jones, R. J. et al. Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity. Phys. Rev. Lett. 94, 193201 (2005).
Gohle, C. et al. A frequency comb in the extreme ultraviolet. Nature 436, 234–237 (2005).
Cingöz, A. et al. Direct frequency comb spectroscopy in the extreme ultraviolet. Nature 482, 68–71 (2012).
Ozawa, A. et al. High harmonic frequency combs for high resolution spectroscopy. Phys. Rev. Lett. 100, 253901 (2008).
Diddams, S. A., Vahala, K. & Udem, T. Optical frequency combs: coherently uniting the electromagnetic spectrum. Science 369, eaay3676 (2020).
Zhang, C. K. et al. Frequency ratio of the 229mTh nuclear isomeric transition and the 87Sr atomic clock. Nature 633, 63–70 (2024).
Holzberger, S. et al. Femtosecond enhancement cavities in the nonlinear regime. Phys. Rev. Lett. 115, 023902 (2015).
Ozawa, A. et al. High average power coherent vuv generation at 10 MHz repetition frequency by intracavity high harmonic generation. Opt. Express 23, 15107–15118 (2015).
Carstens, H. et al. High-harmonic generation at 250 MHz with photon energies exceeding 100 eV. Optica 3, 366–369 (2016).
Pupeza, I. Passive Optical Resonators for Next-Generation Attosecond Metrology (Springer, 2022).
Saule, T. et al. Cumulative plasma effects in cavity-enhanced high-order harmonic generation in gases. APL Photonics 3, 101301 (2018).
Hädrich, S. et al. Exploring new avenues in high repetition rate table-top coherent extreme ultraviolet sources. Light Sci. Appl. 4, e320–e320 (2015).
Allison, T. K. et al. Extreme nonlinear optics in a femtosecond enhancement cavity. Phys. Rev. Lett. 107, 183903 (2011).
Yost, D. C. et al. Power optimization of XUV frequency combs for spectroscopy applications [Invited]. Opt. Express 19, 23483–23493 (2011).
Högner, M., Tosa, V. & Pupeza, I. Generation of isolated attosecond pulses with enhancement cavities—a theoretical study. N. J. Phys. 19, 033040 (2017).
Högner, M. et al. Tailoring the transverse mode of a high-finesse optical resonator with stepped mirrors. J. Opt. 20, 024003 (2018).
Högner, M., Saule, T. & Pupeza, I. Efficiency of cavity-enhanced high harmonic generation with geometric output coupling. Journal of Physics B: Atomic. J. Phys. B At. Mol. Opt. Phys. 52, 075401 (2019).
Sabbar, M. et al. Combining attosecond XUV pulses with coincidence spectroscopy. Rev. Sci. Instrum. 85, 103113 (2014).
Gademann, G. et al. Carrier-envelope phase stabilization of a terawatt level chirped pulse amplifier for generation of intense isolated attosecond pulses. Opt. Express 19, 24922–24932 (2011).
Leuthold, J., Koos, C. & Freude, W. Nonlinear silicon photonics. Nat. Photonics 4, 535–544 (2010).
Zhong, S. Y. et al. Characterizing 86-attosecond isolated pulses based on amplitude gating of high harmonic generation [Invited]. Chin. Opt. Lett. 21, 113201 (2023).
Wang, X. W. et al. Generation of 88 as isolated attosecond pulses with double optical gating. Chin. Phys. Lett. 37, 023201 (2020).
Krebs, M. et al. Towards isolated attosecond pulses at megahertz repetition rates. Nat. Photonics 7, 555–559 (2013).
Furch, F. J. et al. CEP-stable few-cycle pulses with more than 190 μJ of energy at 100 kHz from a noncollinear optical parametric amplifier. Opt. Lett. 42, 2495–2498 (2017).
Witting, T. et al. Generation and characterization of isolated attosecond pulses at 100 kHz repetition rate. Optica 9, 145–151 (2022).
Ye, P. et al. Attosecond pulse generation at ELI-ALPS 100 kHz repetition rate beamline. J. Phys. B At. Mol. Opt. Phys. 53, 154004 (2020).
Emaury, F. et al. Compact extreme ultraviolet source at megahertz pulse repetition rate with a low-noise ultrafast thin-disk laser oscillator. Optica 2, 980–984 (2015).
Liu, H. Y. et al. High-power 100 W Kerr-lens mode-locked ring-cavity femtosecond Yb:YAG thin-disk oscillator. Opt. Lett. 49, 1157–1160 (2024).
Drs, J. et al. Ultrafast thin-disk laser oscillators as driving sources for high harmonic generation. EPJ Web Conf. 287, 08007 (2023).
Fischer, J. et al. Intra-oscillator high harmonic generation in a thin-disk laser operating in the 100-fs regime. Opt. Express 29, 5833–5839 (2021).
Zhang, J. W. et al. Multi-mW, few-cycle mid-infrared continuum spanning from 500 to 2250 cm−1. Light Sci. Appl. 7, 17180–17180 (2017).
Zhang, J. W. et al. Distributed Kerr Lens mode-locked Yb:YAG thin-disk oscillator. Ultrafast Sci. 2022, 9837892 (2022).
Yang, T. T. et al. 0.5 GHz femtosecond Yb:YAG thin-disk oscillator. Opt. Lett. 50, 2235–2238 (2025).
Zhang, J. W., Mak, K. F. & Pronin, O. Kerr-Lens mode-locked 2-μm thin-disk lasers. IEEE J. Sel. Top. Quantum Electron. 24, 1102111 (2018).
Labaye, F. et al. Extreme ultraviolet light source at a megahertz repetition rate based on high-harmonic generation inside a mode-locked thin-disk laser oscillator. Opt. Lett. 42, 5170–5173 (2017).
Vampa, G. et al. Characterization of high-harmonic emission from ZnO up to 11 eV pumped with a Cr:ZnS high-repetition-rate source. Opt. Lett. 44, 259–262 (2019).
You, Y. S., Reis, D. A. & Ghimire, S. Anisotropic high-harmonic generation in bulk crystals. Nat. Phys. 13, 345–349 (2017).
Lee, K. F. et al. Harmonic generation in solids with direct fiber laser pumping. Opt. Lett. 42, 1113–1116 (2017).
Bagnoud, V. et al. 5Hz, >250mJ optical parametric chirped-pulse amplifier at 1053nm. Opt. Lett. 30, 1843–1845 (2005).
Müller, M. et al. Multipass cell for high-power few-cycle compression. Opt. Lett. 46, 2678–2681 (2021).
Losev, L. et al. Compression of few-microjoule femtosecond pulses in a hollow-core revolver fiber. Fibers 11, 22 (2023).
Osolodkov, M. et al. Generation and characterisation of few-pulse attosecond pulse trains at 100 kHz repetition rate. Journal of Physics B: Atomic. Mol. Opt. Phys. 53, 194003 (2020).
Feng, X. M. et al. Generation of isolated attosecond pulses with 20 to 28 femtosecond lasers. Phys. Rev. Lett. 103, 183901 (2009).
Fabris, D. et al. Synchronized pulses generated at 20 eV and 90 eV for attosecond pump–probe experiments. Nat. Photonics 9, 383–387 (2015).
Timmers, H. et al. Polarization-assisted amplitude gating as a route to tunable, high-contrast attosecond pulses. Optica 3, 707–710 (2016).
Cousin, S. L. et al. Attosecond streaking in the water window: a new regime of attosecond pulse characterization. Phys. Rev. X 7, 041030 (2017).
Li, J. et al. Double optical gating for generating high flux isolated attosecond pulses in the soft X-ray regime. Opt. Express 27, 30280–30286 (2019).
Rossi, G. M. et al. Sub-cycle millijoule-level parametric waveform synthesizer for attosecond science. Nat. Photonics 14, 629–635 (2020).
