Friday, January 2

Ultrafast lasers for attosecond science


  • Hentschel, M. et al. Attosecond metrology. Nature 414, 509–513 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Paul, P. M. et al. Observation of a train of attosecond pulses from high harmonic generation. Science 292, 1689–1692 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Antoine, P., L’Huillier, A. & Lewenstein, M. Attosecond pulse trains using high–order harmonics. Phys. Rev. Lett. 77, 1234–1237 (1996).

    Article 
    ADS 

    Google Scholar
     

  • Schultze, M. et al. Delay in photoemission. Science 328, 1658–1662 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Klünder, K. et al. Probing single-photon ionization on the attosecond time scale. Phys. Rev. Lett. 106, 143002 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Zhong, S. Y. et al. Attosecond electron–spin dynamics in Xe 4d photoionization. Nat. Commun. 11, 5042 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Biegert, J. et al. Attosecond technology(ies) and science. J. Phys. B At. Mol. Opt. Phys. 54, 070201 (2021).

    Article 

    Google Scholar
     

  • Goulielmakis, E. et al. Real-time observation of valence electron motion. Nature 466, 739–743 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Holler, M. et al. Attosecond electron wave-packet interference observed by transient absorption. Phys. Rev. Lett. 106, 123601 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Chini, M. et al. Subcycle ac stark shift of helium excited states probed with isolated attosecond pulses. Phys. Rev. Lett. 109, 073601 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Ott, C. et al. Lorentz meets Fano in spectral line shapes: a universal phase and its laser control. Science 340, 716–720 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Wang, H. et al. Attosecond time-resolved autoionization of argon. Phys. Rev. Lett. 105, 143002 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Geneaux, R. et al. Transient absorption spectroscopy using high harmonic generation: a review of ultrafast X-ray dynamics in molecules and solids. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 377, 20170463 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Bernhardt, B. et al. High-spectral-resolution attosecond absorption spectroscopy of autoionization in xenon. Phys. Rev. A 89, 023408 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Takahashi, E. J. et al. Attosecond nonlinear optics using gigawatt-scale isolated attosecond pulses. Nat. Commun. 4, 2691 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Tzallas, P. et al. Direct observation of attosecond light bunching. Nature 426, 267–271 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Calegari, F. et al. Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses. Science 346, 336–339 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Krausz, F. & Ivanov, M. Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Cavalieri, A. L. et al. Attosecond spectroscopy in condensed matter. Nature 449, 1029–1032 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Uiberacker, M. et al. Attosecond real-time observation of electron tunnelling in atoms. Nature 446, 627–632 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Hu, S. Q. & Meng, S. Ultrafast condensed matter physics at attoseconds. Chin. Phys. Lett. 40, 117801 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Moulet, A. et al. Soft x-ray excitonics. Science 357, 1134–1138 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Tancogne-Dejean, N., Sentef, M. A. & Rubio, A. Ultrafast modification of Hubbard U in a strongly correlated material: ab initio high-harmonic generation in NiO. Phys. Rev. Lett. 121, 097402 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Nisoli, M. et al. Attosecond electron dynamics in molecules. Chem. Rev. 117, 10760–10825 (2017).

    Article 

    Google Scholar
     

  • Leone, S. R. Reinvented: an attosecond chemist. Annu. Rev. Phys. Chem. 75, 1–19 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Palacios, A., Sanz-Vicario, J. L. & Martín, F. Theoretical methods for attosecond electron and nuclear dynamics: applications to the H2 molecule. J. Phys. B At. Mol. Opt. Phys. 48, 242001 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Chang, Z. H., Corkum, P. B. & Leone, S. R. Attosecond optics and technology: progress to date and future prospects [Invited]. J. Opt. Soc. Am. B 33, 1081–1097 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Schultze, M. et al. Controlling dielectrics with the electric field of light. Nature 493, 75–78 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Nabben, D. et al. Attosecond electron microscopy of sub-cycle optical dynamics. Nature 619, 63–67 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Tzallas, P. et al. Extreme-ultraviolet pump–probe studies of one-femtosecond-scale electron dynamics. Nat. Phys. 7, 781–784 (2011).

    Article 

    Google Scholar
     

  • Sekikawa, T. et al. Nonlinear optics in the extreme ultraviolet. Nature 432, 605–608 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Eschen, W. et al. Towards attosecond imaging at the nanoscale using broadband holography-assisted coherent imaging in the extreme ultraviolet. Commun. Phys. 4, 154 (2021).

    Article 

    Google Scholar
     

  • Pertot, Y. et al. Time-resolved x-ray absorption spectroscopy with a water window high-harmonic source. Science 355, 264–267 (2017).

    Article 
    ADS 

    Google Scholar
     

  • L’Huillier, A. et al. High-order Harmonic-generation cutoff. Phys. Rev. A 48, R3433–R3436 (1993).

    Article 
    ADS 

    Google Scholar
     

  • Cattaneo, L. et al. Attosecond coupled electron and nuclear dynamics in dissociative ionization of H2. Nat. Phys. 14, 733–738 (2018).

    Article 

    Google Scholar
     

  • Neppl, S. et al. Direct observation of electron propagation and dielectric screening on the atomic length scale. Nature 517, 342–346 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Saule, T. et al. High-flux ultrafast extreme-ultraviolet photoemission spectroscopy at 18.4 MHz pulse repetition rate. Nat. Commun. 10, 458 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Chatziathanasiou, S. et al. Generation of attosecond light pulses from gas and solid state media. Photonics 4, 26 (2017).

    Article 

    Google Scholar
     

  • Midorikawa, K. Progress on table-top isolated attosecond light sources. Nat. Photonics 16, 267–278 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Luo, W. et al. Attosecond Thomson-scattering x-ray source driven by laser-based electron acceleration. Appl. Phys. Lett. 103, 174103 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Luo, W. et al. Generation of bright attosecond x-ray pulse trains via Thomson scattering from laser-plasma accelerators. Opt. Express 22, 32098–32106 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Venkat, P. & Holkundkar, A. R. Higher harmonics and attosecond pulse generation by laser induced Thomson scattering in atomic clusters. Phys. Rev. Accel. Beams 22, 084401 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Baker, S. et al. Femtosecond to attosecond light pulses from a molecular modulator. Nat. Photonics 5, 664–671 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Hassan, M. T. et al. Optical attosecond pulses and tracking the nonlinear response of bound electrons. Nature 530, 66–70 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Greening, D. et al. Generation and measurement of isolated attosecond pulses with enhanced flux using a two colour synthesized laser field. Opt. Express 28, 23329–23337 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Xue, B. et al. Fully stabilized multi-TW optical waveform synthesizer: toward gigawatt isolated attosecond pulses. Sci. Adv. 6, eaay2802 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Duris, J. et al. Tunable isolated attosecond X-ray pulses with gigawatt peak power from a free-electron laser. Nat. Photonics 14, 30–36 (2020).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Liu, W. H. et al. Generating high repetition rate X-ray attosecond pulses in a diffraction limited storage ring. Sci. Rep. 13, 14019 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Hettel, R. DLSR design and plans: an international overview. J. Synchrotron Radiat. 21, 843–855 (2014).

    Article 

    Google Scholar
     

  • Travers, J. C. et al. High-energy pulse self-compression and ultraviolet generation through soliton dynamics in hollow capillary fibres. Nat. Photonics 13, 547–554 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Ferray, M. et al. Multiple-harmonic conversion of 1064 nm radiation in rare gases. J. Phys. B At. Mol. Opt. Phys. 21, L31–L35 (1988).

    Article 

    Google Scholar
     

  • Corkum, P. B. Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993).

    Article 
    ADS 

    Google Scholar
     

  • Kulander, K. C., Schafer, K. J. & Krause, J. L. In Super-Intense Laser Atom Physics Vol. 316, (eds Piraux, B. et al.) 95–110 (NATO ASI Series B: Physics, Plenum, 1993).

  • Schafer, K. J. et al. Above threshold ionization beyond the high harmonic cutoff. Phys. Rev. Lett. 70, 1599–1602 (1993).

    Article 
    ADS 

    Google Scholar
     

  • Okino, T. et al. Direct observation of an attosecond electron wave packet in a nitrogen molecule. Sci. Adv. 1, e1500356 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Christov, I. P., Murnane, M. M. & Kapteyn, H. C. High-harmonic generation of attosecond pulses in the “Single-Cycle” regime. Phys. Rev. Lett. 78, 1251–1254 (1997).

    Article 
    ADS 

    Google Scholar
     

  • Baltuška, A. et al. Attosecond control of electronic processes by intense light fields. Nature 421, 611–615 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Drescher, M. et al. X-ray pulses approaching the attosecond frontier. Science 291, 1923–1927 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Kienberger, R. et al. Atomic transient recorder. Nature 427, 817–821 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Goulielmakis, E. et al. Single-cycle nonlinear optics. Science 320, 1614–1617 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Gaumnitz, T. et al. Streaking of 43-attosecond soft-X-ray pulses generated by a passively CEP-stable mid-infrared driver. Opt. Express 25, 27506–27518 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Ferrari, F. et al. High-energy isolated attosecond pulses generated by above-saturation few-cycle fields. Nat. Photonics 4, 875–879 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Sansone, G. et al. Isolated single-cycle attosecond pulses. Science 314, 443–446 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Rykovanov, S. G. et al. Intense single attosecond pulses from surface harmonics using the polarization gating technique. N. J. Phys. 10, 025025 (2008).

    Article 

    Google Scholar
     

  • Shan, B., Ghimire, S. & Chang, Z. H. Generation of the attosecond extreme ultraviolet supercontinuum by a polarization gating. J. Mod. Opt. 52, 277–283 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Mashiko, H. et al. Tunable frequency-controlled isolated attosecond pulses characterized by either 750 nm or 400 nm wavelength streak fields. Opt. Express 18, 25887–25895 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Kim, K. T. et al. Photonic streaking of attosecond pulse trains. Nat. Photonics 7, 651–656 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Tzallas, P. et al. Generation of intense continuum extreme-ultraviolet radiation by many-cycle laser fields. Nat. Phys. 3, 846–850 (2007).

    Article 

    Google Scholar
     

  • Ghimire, S. & Reis, D. A. High-harmonic generation from solids. Nat. Phys. 15, 10–16 (2019).

    Article 

    Google Scholar
     

  • Luu, T. T. et al. Extreme ultraviolet high-harmonic spectroscopy of solids. Nature 521, 498–502 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Golde, D., Meier, T. & Koch, S. W. High harmonics generated in semiconductor nanostructures by the coupled dynamics of optical inter- and intraband excitations. Phys. Rev. B 77, 075330 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Ghimire, S. et al. Redshift in the optical absorption of ZnO single crystals in the presence of an intense midinfrared laser field. Phys. Rev. Lett. 107, 167407 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Lyssenko, V. G. et al. Direct measurement of the spatial displacement of Bloch-oscillating electrons in semiconductor superlattices. Phys. Rev. Lett. 79, 301–304 (1997).

    Article 
    ADS 

    Google Scholar
     

  • Vampa, G. et al. Theoretical analysis of high-harmonic generation in solids. Phys. Rev. Lett. 113, 073901 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Wu, M. X. et al. High-harmonic generation from Bloch electrons in solids. Phys. Rev. A 91, 043839 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Hawkins, P. G., Ivanov, M. Y. & Yakovlev, V. S. Effect of multiple conduction bands on high-harmonic emission from dielectrics. Phys. Rev. A 91, 013405 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Goulielmakis, E. & Brabec, T. High harmonic generation in condensed matter. Nat. Photonics 16, 411–421 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Krause, J. L., Schafer, K. J. & Kulander, K. C. High-order harmonic generation from atoms and ions in the high intensity regime. Phys. Rev. Lett. 68, 3535–3538 (1992).

    Article 
    ADS 

    Google Scholar
     

  • Ghimire, S. et al. Observation of high-order harmonic generation in a bulk crystal. Nat. Phys. 7, 138–141 (2011).

    Article 

    Google Scholar
     

  • Germain, L. & Cheeke, J. D. N. Generation and detection of high-order harmonics in liquids using a scanning acoustic microscope. J. Acoust. Soc. Am. 83, 942–949 (1988).

    Article 
    ADS 

    Google Scholar
     

  • Ding, Z. W. et al. High-order harmonic generation in liquids in bicircularly polarized laser fields. Phys. Rev. A 107, 013503 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Luu, T. T. et al. Extreme–ultraviolet high–harmonic generation in liquids. Nat. Commun. 9, 3723 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Xia, C. L. et al. Role of charge-resonance states in liquid high-order harmonic generation. Phys. Rev. A 105, 013115 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Sansone, G., Poletto, L. & Nisoli, M. High-energy attosecond light sources. Nat. Photonics 5, 655–663 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Hüller, S. & Meyer-ter-Vehn, J. High-order harmonic radiation from solid layers irradiated by subpicosecond laser pulses. Phys. Rev. A 48, 3906–3909 (1993).

    Article 
    ADS 

    Google Scholar
     

  • Nomura, Y. et al. Attosecond phase locking of harmonics emitted from laser-produced plasmas. Nat. Phys. 5, 124–128 (2009).

    Article 

    Google Scholar
     

  • Dromey, B. et al. Bright multi-keV harmonic generation from relativistically oscillating plasma surfaces. Phys. Rev. Lett. 99, 085001 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Thaury, C. et al. Plasma mirrors for ultrahigh-intensity optics. Nat. Phys. 3, 424–429 (2007).

    Article 

    Google Scholar
     

  • Bulanov, S. V., Naumova, N. M. & Pegoraro, F. Interaction of an ultrashort, relativistically strong laser pulse with an overdense plasma. Phys. Plasmas 1, 745–757 (1994).

    Article 
    ADS 

    Google Scholar
     

  • Lichters, R., Meyer-ter-Vehn, J. & Pukhov, A. Short-pulse laser harmonics from oscillating plasma surfaces driven at relativistic intensity. Phys. Plasmas 3, 3425–3437 (1996).

    Article 
    ADS 

    Google Scholar
     

  • Quéré, F. et al. Coherent wake emission of high-order harmonics from overdense plasmas. Phys. Rev. Lett. 96, 125004 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Salmeh, F. & Mohebbi, M. Generation of a single attosecond pulse by gaseous atoms in a conical plasmonic nanostructure using a radially polarized laser beam. Opt. Laser Technol. 170, 110319 (2024).

    Article 

    Google Scholar
     

  • Yang, Y. Y. et al. High-harmonic and single attosecond pulse generation using plasmonic field enhancement in ordered arrays of gold nanoparticles with chirped laser pulses. Opt. Express 21, 2195–2205 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Makos, I. et al. 10-gigawatt attosecond source for non-linear XUV optics and XUV-pump-XUV-probe studies. Sci. Rep. 10, 3759 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Popmintchev, T. et al. Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers. Science 336, 1287–1291 (2012).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Chen, Z. P. et al. Attosecond pulses from a solid driven by a synthesized two-color field at megahertz repetition rate. ACS Photonics 12, 2819–2827 (2025).

    Article 

    Google Scholar
     

  • Maiman, T. H. Stimulated optical radiation in ruby. Nature 187, 493–494 (1960).

    Article 
    ADS 

    Google Scholar
     

  • McPherson, A. et al. Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases. J. Opt. Soc. Am. B 4, 595–601 (1987).

    Article 
    ADS 

    Google Scholar
     

  • Li, X. F. et al. Multiple-harmonic generation in rare gases at high laser intensity. Phys. Rev. A 39, 5751–5761 (1989).

    Article 
    ADS 

    Google Scholar
     

  • Chang, Z. H. Fundamentals of Attosecond Optics (CRC Press, 2016).

  • Major, B. et al. Compact intense extreme-ultraviolet source. Optica 8, 960–965 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Ravasio, A. et al. Single-shot diffractive imaging with a table-top femtosecond soft x-ray laser-harmonics source. Phys. Rev. Lett. 103, 028104 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Manschwetus, B. et al. Two-photon double ionization of neon using an intense attosecond pulse train. Phys. Rev. A 93, 061402 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Chang, Z. H. et al. Intense infrared lasers for strong-field science. Adv. Opt. Photonics 14, 652–782 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Strickland, D. & Mourou, G. Compression of amplified chirped optical pulses. Opt. Commun. 56, 219–221 (1985).

    Article 
    ADS 

    Google Scholar
     

  • Mourou, G. Nobel Lecture: extreme light physics and application. Rev. Mod. Phys. 91, 030501 (2019).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Joyce, D. B. & Schmid, F. Progress in the growth of large scale Ti:sapphire crystals by the heat exchanger method (HEM) for petawatt class lasers. J. Cryst. Growth 312, 1138–1141 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Li, W. Q. et al. 339 J high-energy Ti:sapphire chirped-pulse amplifier for 10 PW laser facility. Opt. Lett. 43, 5681–5684 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Maine, P. et al. Generation of ultrahigh peak power pulses by chirped pulse amplification. IEEE J. Quantum Electron. 24, 398–403 (1988).

    Article 
    ADS 

    Google Scholar
     

  • Chu, Y. X. et al. High-energy large-aperture Ti:sapphire amplifier for 5 PW laser pulses. Opt. Lett. 40, 5011–5014 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Hoffstädt, A. High-average-power flash-lamp-pumped Ti:sapphire laser. Opt. Lett. 19, 1523–1525 (1994).

    Article 
    ADS 

    Google Scholar
     

  • Pfaff, Y. et al. Nonlinear pulse compression of a 200 mJ and 1 kW ultrafast thin-disk amplifier. Opt. Express 31, 22740–22756 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Herkommer, C. et al. Ultrafast thin-disk multipass amplifier with 720 mJ operating at kilohertz repetition rate for applications in atmospheric research. Opt. Express 28, 30164–30173 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Pfaff, Y. et al. Thin-disk based regenerative chirped pulse amplifier with 550 mJ pulse energy at 1 kHz repetition rate. In: Proc. Advanced Solid State Lasers 2021 (Optica Publishing Group, 2021).

  • Giordmaine, J. A. & Miller, R. C. Tunable coherent parametric oscillation in LiNbO3 at optical frequencies. Phys. Rev. Lett. 14, 973–976 (1965).

    Article 
    ADS 

    Google Scholar
     

  • Manzoni, C. & Cerullo, G. Design criteria for ultrafast optical parametric amplifiers. J. Opt. 18, 103501 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Nikogosyan, D. N. Beta barium borate (BBO). Appl. Phys. A 52, 359–368 (1991).

    Article 
    ADS 

    Google Scholar
     

  • Thiré, N. et al. 10 mJ 5-cycle pulses at 1.8 μm through optical parametric amplification. Appl. Phys. Lett. 106, 091110 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Cerullo, G. et al. Sub-8-fs pulses from an ultrabroadband optical parametric amplifier in the visible. Opt. Lett. 23, 1283–1285 (1998).

    Article 
    ADS 

    Google Scholar
     

  • Shirakawa, A. et al. Sub-5-fs visible pulse generation by pulse-front-matched noncollinear optical parametric amplification. Appl. Phys. Lett. 74, 2268–2270 (1999).

    Article 
    ADS 

    Google Scholar
     

  • Vozzi, C. et al. High-energy, few-optical-cycle pulses at 1.5 µm with passive carrier-envelope phase stabilization. Opt. Express 14, 10109–10116 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Brida, D. et al. Sub-two-cycle light pulses at 1.6 μm from an optical parametric amplifier. Opt. Lett. 33, 741–743 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Vozzi, C. et al. Millijoule-level phase-stabilized few-optical-cycle infrared parametric source. Opt. Lett. 32, 2957–2959 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Takahashi, E. J. et al. 10mJ class femtosecond optical parametric amplifier for generating soft x-ray harmonics. Appl. Phys. Lett. 93, 041111 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Kapteyn, H. C. et al. Prepulse energy suppression for high-energy ultrashort pulses using self-induced plasma shuttering. Opt. Lett. 16, 490–492 (1991).

    Article 
    ADS 

    Google Scholar
     

  • Rosen, M. D. et al. Plasma production from ultraviolet-transmitting targets using subpicosecond ultraviolet radiation. Opt. Lett. 16, 1261–1263 (1991).

    Article 
    ADS 

    Google Scholar
     

  • Doumy, G. et al. Complete characterization of a plasma mirror for the production of high-contrast ultraintense laser pulses. Phys. Rev. E 69, 026402 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Itatani, J. et al. Suppression of the amplified spontaneous emission in chirped-pulse-amplification lasers by clean high-energy seed-pulse injection. Opt. Commun. 148, 70–74 (1998).

    Article 
    ADS 

    Google Scholar
     

  • Kalashnikov, M. P. et al. Characterization of a nonlinear filter for the front-end of a high contrast double-CPA Ti:sapphire laser. Opt. Express 12, 5088–5097 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Jullien, A. et al. 10-10 temporal contrast for femtosecond ultraintense lasers by cross-polarized wave generation. Opt. Lett. 30, 920–922 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Dubietis, A., Jonušauskas, G. & Piskarskas, A. Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal. Opt. Commun. 88, 437–440 (1992).

    Article 
    ADS 

    Google Scholar
     

  • Yu, L. H. et al. Optimization for high-energy and high-efficiency broadband optical parametric chirped-pulse amplification in LBO near 800 nm. Opt. Lett. 40, 3412–3415 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Begishev, I. A. et al. Final amplifier of an ultra-intense all-OPCPA system with 13-J output signal energy and 41% pump-to-signal conversion efficiency. Opt. Express 31, 24785–24795 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Lozhkarev, V. V. et al. Compact 0.56 Petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals. Laser Phys. Lett. 4, 421–427 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Herrmann, D. et al. Generation of sub-three-cycle, 16 TW light pulses by using noncollinear optical parametric chirped-pulse amplification. Opt. Lett. 34, 2459–2461 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Deng, Y. P. et al. Carrier-envelope-phase-stable, 12 mJ, 15 cycle laser pulses at 21 μm. Opt. Lett. 37, 4973–4975 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Yin, Y. C. et al. High-efficiency optical parametric chirped-pulse amplifier in BiB3O6 for generation of 3 mJ, two-cycle, carrier-envelope-phase-stable pulses at 1.7 μm. Opt. Lett. 41, 1142–1145 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Li, J. et al. Polarization gating of high harmonic generation in the water window. Appl. Phys. Lett. 108, 231102 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Kiriyama, H. et al. Prepulse-free, multi-terawatt, sub-30-fs laser system. Opt. Express 14, 438–445 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Kitagawa, Y. et al. Petawatt laser for fast ignitor and laser matter interaction research. In Proc. Technical Digest. CLEO/Pacific Rim 2001. 4th Pacific Rim Conference on Lasers and Electro-Optics (Cat. No.01TH8557) (IEEE, 2002).

  • Moses, J. et al. Temporal optimization of ultrabroadband high-energy OPCPA. Opt. Express 17, 5540–5555 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Ross, I. N. et al. Analysis and optimization of optical parametric chirped pulse amplification. J. Opt. Soc. Am. B 19, 2945–2956 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Fuji, T. et al. Parametric amplification of few-cycle carrier-envelope phase-stable pulses at 2.1 μm. Opt. Lett. 31, 1103–1105 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Moses, J. et al. Optimized 2-micron optical parametric chirped pulse amplifier for high harmonic generation. In Proc. 16th International Conference on Ultrafast Phenomena XVI 786–788 (Springer, 2008).

  • Zhang, Q. B. et al. Dual-chirped optical parametric amplification for generating few hundred mJ infrared pulses. Opt. Express 19, 7190–7212 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Fu, Y. X., Midorikawa, K. & Takahashi, E. J. Towards a petawatt-class few-cycle infrared laser system via dual-chirped optical parametric amplification. Sci. Rep. 8, 7692 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Nabekawa, Y. et al. Multi-terawatt laser system generating 12-fs pulses at 100 Hz repetition rate. Appl. Phys. B 101, 523–534 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Cunningham, E., Wu, Y. & Chang, Z. H. Carrier-envelope phase control of a 10 Hz, 25 TW laser for high-flux extreme ultraviolet quasi-continuum generation. Appl. Phys. Lett. 107, 201108 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Xu, L. et al. 100-mJ class, sub-two-cycle, carrier-envelope phase-stable dual-chirped optical parametric amplification. Opt. Lett. 47, 3371–3374 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Xu, L. & Takahashi, E. J. Dual-chirped optical parametric amplification of high-energy single-cycle laser pulses. Nat. Photonics 18, 99–106 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Schmidt, B. E. et al. Frequency domain optical parametric amplification. Nat. Commun. 5, 3643 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Gu, X. et al. Generation of carrier-envelope-phase-stable 2-cycle 740-μJ pulses at 21-μm carrier wavelength. Opt. Express 17, 62–69 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Nakamura, K. et al. Diagnostics, control and performance parameters for the BELLA high repetition rate petawatt class laser. IEEE J. Quantum Electron. 53, 1200121 (2017).

    Article 

    Google Scholar
     

  • Li, Z. Y. et al. Influence of spectral clipping in chirped pulse amplification laser system on pulse temporal profile. In Proc. SPIE 6823, High-Power Lasers and Applications IV 682315 (SPIE, 2008).

  • Ma, J. G. et al. Spatiotemporal noise characterization for chirped-pulse amplification systems. Nat. Commun. 6, 6192 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Bromage, J., Dorrer, C. & Jungquist, R. K. Temporal contrast degradation at the focus of ultrafast pulses from high-frequency spectral phase modulation. J. Optical Soc. Am. B 29, 1125–1135 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Wang, J. et al. Spatiotemporal coherent noise in frequency-domain optical parametric amplification. Opt. Express 26, 10953–10967 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Gruson, V. et al. 2.5 TW, two-cycle IR laser pulses via frequency domain optical parametric amplification. Opt. Express 25, 27706–27714 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Phillips, C. R. et al. Frequency-domain nonlinear optics in two-dimensionally patterned quasi-phase-matching media. Opt. Express 24, 15940–15953 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Ma, J. G. et al. Origin and suppression of back conversion in a phase-matched nonlinear frequency down-conversion process. Chin. Opt. Lett. 15, 021901–021904 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Ma, J. G. et al. Quasi-parametric amplification of chirped pulses based on a Sm3+-doped yttrium calcium oxyborate crystal. Optica 2, 1006–1009 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Ma, J. G. et al. Demonstration of 85% pump depletion and 10−6 noise content in quasi-parametric chirped-pulse amplification. Light Sci. Appl. 11, 269 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Ma, J. G. et al. Broadband, efficient, and robust quasi-parametric chirped-pulse amplification. Opt. Express 25, 25149–25164 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Ding, Y. F. et al. Mid-infrared quasi-parametric chirped-pulse amplification based on Sm:LGN crystals. Opt. Express 31, 8864–8874 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Lin, Q. et al. Optical modification of nonlinear crystals for quasi-parametric chirped-pulse amplification. Fundam. Res. 4, 43–50 (2024).

    Article 

    Google Scholar
     

  • Zhou, P. et al. Coherent beam combining of fiber amplifiers using stochastic parallel gradient descent algorithm and its application. IEEE J. Sel. Top. Quantum Electron. 15, 248–256 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Fan, T. Y. Laser beam combining for high-power, high-radiance sources. IEEE J. Sel. Top. Quantum Electron. 11, 567–577 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Chang, W. Z. et al. Femtosecond pulse spectral synthesis in coherently-spectrally combined multi-channel fiber chirped pulse amplifiers. Opt. Express 21, 3897–3910 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Seise, E. et al. Coherent addition of fiber-amplified ultrashort laser pulses. Opt. Express 18, 27827–27835 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Mueller, M. et al. 1.8-kW 16-channel ultrafast fiber laser system. In Proc. SPIE 10512, Fiber Lasers XV: Technology and Systems 1051208 (SPIE, 2018).

  • Klenke, A. et al. 530 W, 1.3 mJ, four-channel coherently combined femtosecond fiber chirped-pulse amplification system. Opt. Lett. 38, 2283–2285 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Seise, E. et al. 88 W 0.5 mJ femtosecond laser pulses from two coherently combined fiber amplifiers. Opt. Lett. 36, 3858–3860 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Klenke, A. et al. 22 GW peak-power fiber chirped-pulse-amplification system. Opt. Lett. 39, 6875–6878 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Klenke, A. et al. Coherently-combined two channel femtosecond fiber CPA system producing 3 mJ pulse energy. Opt. Express 19, 24280–24285 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Zhou, S. A., Wise, F. W. & Ouzounov, D. G. Divided-pulse amplification of ultrashort pulses. Opt. Lett. 32, 871–873 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Kong, L. J. et al. Generation of megawatt peak power picosecond pulses from a divided-pulse fiber amplifier. Opt. Lett. 37, 253–255 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Roither, S. et al. Sagnac interferometric multipass loop amplifier. Opt. Express 20, 25121–25129 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Zaouter, Y. et al. Femtosecond fiber chirped- and divided-pulse amplification system. Opt. Lett. 38, 106–108 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Lesparre, F. et al. Yb:YAG single-crystal fiber amplifiers for picosecond lasers using the divided pulse amplification technique. Opt. Lett. 41, 1628–1631 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Pouysegur, J. et al. Simple Yb:YAG femtosecond booster amplifier using divided-pulse amplification. Opt. Express 24, 9896–9904 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Daniault, L. et al. High peak-power stretcher-free femtosecond fiber amplifier using passive spatio-temporal coherent combining. Opt. Express 20, 21627–21634 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Kuznetsov, I., Chizhov, S. & Palashov, O. High-energy and high-average-power two-channel Yb:YAG amplifier with passive coherent combining. J. Opt. Soc. Am. B 39, 2692–2696 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Kienel, M. et al. Analysis of passively combined divided-pulse amplification as an energy-scaling concept. Opt. Express 21, 29031–29042 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Guichard, F. et al. Analysis of limitations in divided-pulse nonlinear compression and amplification. IEEE J. Sel. Top. Quantum Electron. 20, 619–623 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Guichard, F. et al. Coherent combining efficiency in strongly saturated divided-pulse amplification systems. Opt. Express 24, 25329–25336 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Kienel, M. et al. Energy scaling of femtosecond amplifiers using actively controlled divided-pulse amplification. Opt. Lett. 39, 1049–1052 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Webb, B. et al. Divided-pulse amplification to the joule level. Opt. Lett. 41, 3106–3109 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Kienel, M. et al. Multidimensional coherent pulse addition of ultrashort laser pulses. Opt. Lett. 40, 522–525 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Kienel, M. et al. 12 mJ kW-class ultrafast fiber laser system using multidimensional coherent pulse addition. Opt. Lett. 41, 3343–3346 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Stark, H. et al. 23 mJ high-power fiber CPA system using electro-optically controlled divided-pulse amplification. Opt. Lett. 44, 5529–5532 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Stark, H. et al. Electro-optically controlled divided-pulse amplification. Opt. Express 25, 13494–13503 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Goodno, G. D., Shih, C. C. & Rothenberg, J. E. Perturbative analysis of coherent combining efficiency with mismatched lasers. Opt. Express 18, 25403–25414 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Kraus, P. M. et al. The ultrafast X-ray spectroscopic revolution in chemical dynamics. Nat. Rev. Chem. 2, 82–94 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Wu, M. X. et al. Theory of strong-field attosecond transient absorption. J. Phys. B At. Mol. Opt. Phys. 49, 062003 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Attar, A. R. et al. Femtosecond x-ray spectroscopy of an electrocyclic ring-opening reaction. Science 356, 54–59 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Wirth, A. et al. Synthesized light transients. Science 334, 195–200 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Bleotu, P. G. et al. Post-compression of high-energy, sub-picosecond laser pulses. High. Power Laser Sci. Eng. 11, e30 (2023).

    Article 

    Google Scholar
     

  • Tajima, T., Yan, X. Q. & Ebisuzaki, T. Wakefield acceleration. Rev. Mod. Plasma Phys. 4, 7 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Kim, J. I. et al. Sub-10 fs pulse generation by post-compression for peak-power enhancement of a 100-TW Ti:Sapphire laser. Opt. Express 30, 8734–8741 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Ginzburg, V. et al. 11 fs, 1.5 PW laser with nonlinear pulse compression. Opt. Express 29, 28297–28306 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Wheeler, J. et al. Compressing high energy lasers through optical polymer films. Photonics 9, 715 (2022).

    Article 

    Google Scholar
     

  • Mourou, G. et al. Single cycle thin film compressor opening the door to Zeptosecond-Exawatt physics. Eur. Phys. J. Spec. Top. 223, 1181–1188 (2014).

    Article 

    Google Scholar
     

  • Nagy, T., Simon, P. & Veisz, L. High-energy few-cycle pulses: post-compression techniques. Adv. Phys. X 6, 1845795 (2021).


    Google Scholar
     

  • Nisoli, M., De Silvestri, S. & Svelto, O. Generation of high energy 10 fs pulses by a new pulse compression technique. Appl. Phys. Lett. 68, 2793–2795 (1996).

    Article 
    ADS 

    Google Scholar
     

  • Schenkel, B. et al. Generation of 3.8-fs pulses from adaptive compression of a cascaded hollow fiber supercontinuum. Opt. Lett. 28, 1987–1989 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Anderson, A. et al. Multi-mJ carrier envelope phase stabilized few-cycle pulses generated by a tabletop laser system. Appl. Phys. B 103, 531–536 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Cavalieri, A. L. et al. Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua. N. J. Phys. 9, 242–242 (2007).

    Article 

    Google Scholar
     

  • Wang, P. F. et al. 26 mJ/100 Hz CEP-stable near-single-cycle 4 μm laser based on OPCPA and hollow-core fiber compression. Opt. Lett. 43, 2197–2200 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Descamps, D. et al. High-power sub-15 fs nonlinear pulse compression at 515 nm of an ultrafast Yb-doped fiber amplifier. Opt. Lett. 46, 1804–1807 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Fan, G. et al. 70 mJ nonlinear compression and scaling route for an Yb amplifier using large-core hollow fibers. Opt. Lett. 46, 896–899 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Nisoli, M. Hollow fiber compression technique: a historical perspective. IEEE J. Sel. Top. Quantum Electron. 30, 8900114 (2024).

    Article 

    Google Scholar
     

  • Nagy, T., Forster, M. & Simon, P. Flexible hollow fiber for pulse compressors. Appl. Opt. 47, 3264–3268 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Nagy, T. et al. Generation of three-cycle multi-millijoule laser pulses at 318 W average power. Optica 6, 1423–1424 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Suda, A. et al. Generation of sub-10-fs, 5-mJ-optical pulses using a hollow fiber with a pressure gradient. Appl. Phys. Lett. 86, 111116 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Chen, X. W. et al. Generation of 4.3 fs, 1 mJ laser pulses via compression of circularly polarized pulses in a gas-filled hollow-core fiber. Opt. Lett. 34, 1588–1590 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Paulus, G. G. et al. Absolute-phase phenomena in photoionization with few-cycle laser pulses. Nature 414, 182–184 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Vozzi, C. et al. Optimal spectral broadening in hollow-fiber compressor systems. Appl. Phys. B 80, 285–289 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Ouillé, M. et al. Relativistic-intensity near-single-cycle light waveforms at kHz repetition rate. Light Sci. Appl. 9, 47 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Jeong, Y. G. et al. Direct compression of 170-fs 50-cycle pulses down to 1.5 cycles with 70% transmission. Sci. Rep. 8, 11794 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Silva, F. et al. Strategies for achieving intense single-cycle pulses with in-line post-compression setups. Opt. Lett. 43, 337–340 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Travers, J. C. Optical solitons in hollow-core fibres. Opt. Commun. 555, 130191 (2024).

    Article 

    Google Scholar
     

  • Brahms, C., Belli, F. & Travers, J. C. Infrared attosecond field transients and UV to IR few-femtosecond pulses generated by high-energy soliton self-compression. Phys. Rev. Res. 2, 043037 (2020).

    Article 

    Google Scholar
     

  • Heinzerling, A. M. et al. Field-resolved attosecond solitons. Nat. Photonics 19, 772–777 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Kotsina, N. et al. Extreme soliton dynamics for terawatt-scale optical attosecond pulses and 30 GW-scale sub-3 fs far-ultraviolet pulses. In Proc. 2025 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference. 1 (IEEE, 2025).

  • Piccoli, R. et al. Intense few-cycle visible pulses directly generated via nonlinear fibre mode mixing. Nat. Photonics 15, 884–889 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Hädrich, S. et al. Energetic sub-2-cycle laser with 216 W average power. Opt. Lett. 41, 4332–4335 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Voronin, A. A. et al. Subexawatt few-cycle lightwave generation via multipetawatt pulse compression. Opt. Commun. 291, 299–303 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Lu, C. H. et al. Generation of intense supercontinuum in condensed media. Optica 1, 400–406 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Lu, C. H. et al. Generation of intense supercontinuum in condensed media. In Proc. 2015 European Conference on Lasers and Electro-Optics – European Quantum Electronics Conference (Optica Publishing Group, 2015).

  • Lu, C. H. et al. Multi-plate generation and compression of an intense supercontinuum pulse. In Proc. High Intensity Lasers and High Field Phenomena 2016 (Optica Publishing Group, 2016).

  • Fibich, G. & Gaeta, A. L. Critical power for self-focusing in bulk media and in hollow waveguides. Opt. Lett. 25, 335–337 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Centurion, M. et al. Nonlinearity management in optics: experiment, theory, and simulation. Phys. Rev. Lett. 97, 033903 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Cheng, Y. C. et al. Supercontinuum generation in a multi-plate medium. Opt. Express 24, 7224–7231 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, S. et al. Solitary beam propagation in periodic layered Kerr media enables high-efficiency pulse compression and mode self-cleaning. Light Sci. Appl. 10, 53 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Seo, M. et al. High-contrast, intense single-cycle pulses from an all thin-solid-plate setup. Opt. Lett. 45, 367–370 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Lu, C. H. et al. Greater than 50 times compression of 1030 nm Yb:KGW laser pulses to single-cycle duration. Opt. Express 27, 15638–15648 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Lu, X. M. & Leng, Y. X. Demonstration of contrast improvement and spectral broadening in thin solid plates. Opt. Lett. 46, 5108–5111 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Okamoto, T. et al. Operation at 1 MHz of 1.7-cycle multiple plate compression at 35-W average output power. Opt. Lett. 48, 2579–2582 (2023).

    Article 
    ADS 

    Google Scholar
     

  • He, P. et al. High-efficiency supercontinuum generation in solid thin plates at 0.1 TW level. Opt. Lett. 42, 474–477 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Lu, C. H. et al. Sub-4 fs laser pulses at high average power and high repetition rate from an all-solid-state setup. Opt. Express 26, 8941–8956 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Yan, L. et al. Generation of high-power, high repetition rate, subpicosecond pulses by intracavity chirped pulse regenerative amplification. Appl. Phys. Lett. 54, 690–692 (1989).

    Article 
    ADS 

    Google Scholar
     

  • Yan, L. & Lee, C. H. Self-phase modulation and spatial chirping in a regenerative amplifier. In Proc. Conference on Lasers and Electro-Optics (Optica Publishing Group, 1991).

  • Yan, L., Liu, Y. Q. & Lee, C. H. Pulse temporal and spatial chirping by a bulk Kerr medium in a regenerative amplifier. IEEE J. Quantum Electron. 30, 2194–2202 (1994).

    Article 
    ADS 

    Google Scholar
     

  • Milosevic, N., Tempea, G. & Brabec, T. Optical pulse compression: bulk media versus hollow waveguides. Opt. Lett. 25, 672–674 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Herriott, D., Kogelnik, H. & Kompfner, R. Off-axis paths in spherical mirror interferometers. Appl. Opt. 3, 523–526 (1964).

    Article 
    ADS 

    Google Scholar
     

  • Roland, G. et al. Verfahren und anordung zur spektralen verbreiterung von laserpulsen für die nichtlineare pulskompression. (2015).

  • Russbueldt, P. et al. Innoslab amplifiers. IEEE J. Sel. Top. Quantum Electron. 21, 447–463 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Schulte, J. et al. Nonlinear pulse compression in a multi-pass cell. Opt. Lett. 41, 4511–4514 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Hanna, M. et al. Nonlinear temporal compression in multipass cells: theory. J. Opt. Soc. Am. B 34, 1340–1347 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Weitenberg, J. et al. Multi-pass-cell-based nonlinear pulse compression to 115 fs at 7.5 µJ pulse energy and 300 W average power. Opt. Express 25, 20502–20510 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Weitenberg, J. et al. Nonlinear pulse compression to sub-40 fs at 4.5 uJ pulse energy by multi-pass-cell spectral broadening. IEEE J. Quantum Electron. 53, 8600204 (2017).

    Article 

    Google Scholar
     

  • Viotti, A. L. et al. Few-cycle pulse generation by double-stage hybrid multi-pass multi-plate nonlinear pulse compression. Opt. Lett. 48, 984–987 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Fritsch, K. et al. All-solid-state multipass spectral broadening to sub-20 fs. Opt. Lett. 43, 4643–4646 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Omar, A. et al. Spectral broadening of 2-mJ femtosecond pulses in a compact air-filled convex–concave multi-pass cell. Opt. Lett. 48, 1458–1461 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Russbueldt, P. et al. Scalable 30 fs laser source with 530 W average power. Opt. Lett. 44, 5222–5225 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Ueffing, M. et al. Nonlinear pulse compression in a gas-filled multipass cell. Opt. Lett. 43, 2070–2073 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Lavenu, L. et al. Nonlinear pulse compression based on a gas-filled multipass cell. Opt. Lett. 43, 2252–2255 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Kaumanns, M. et al. Multipass spectral broadening of 18 mJ pulses compressible from 1.3 ps to 41 fs. Opt. Lett. 43, 5877–5880 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Goncharov, S., Fritsch, K. & Pronin, O. Few-cycle pulse compression and white light generation in cascaded multipass cells. Opt. Lett. 48, 147–150 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Kaumanns, M. et al. Spectral broadening of 112 mJ, 1.3 ps pulses at 5 kHz in a LG10 multipass cell with compressibility to 37 fs. Opt. Lett. 46, 929–932 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Grebing, C. et al. Kilowatt-average-power compression of millijoule pulses in a gas-filled multi-pass cell. Opt. Lett. 45, 6250–6253 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Balla, P. et al. Postcompression of picosecond pulses into the few-cycle regime. Opt. Lett. 45, 2572–2575 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Rajhans, S. et al. Post-compression of multi-millijoule picosecond pulses to few-cycles approaching the terawatt regime. Opt. Lett. 48, 4753–4756 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Hädrich, S. et al. Carrier-envelope phase stable few-cycle laser system delivering more than 100W, 1mJ, sub-2-cycle pulses. Opt. Lett. 47, 1537–1540 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Heyl, C. M. et al. High-energy bow tie multi-pass cells for nonlinear spectral broadening applications. J. Phys. Photonics 4, 014002 (2022).

    Article 

    Google Scholar
     

  • Viotti, A. L. et al. Multi-pass cells for post-compression of ultrashort laser pulses. Optica 9, 197–216 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Lavenu, L. et al. High-power two-cycle ultrafast source based on hybrid nonlinear compression. Opt. Express 27, 1958–1967 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Daniault, L. et al. Single-stage few-cycle nonlinear compression of milliJoule energy Ti:Sa femtosecond pulses in a multipass cell. Opt. Lett. 46, 5264–5267 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Barbiero, G. et al. Efficient nonlinear compression of a thin-disk oscillator to 8.5 fs at 55 W average power. Opt. Lett. 46, 5304–5307 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Baltuška, A., Fuji, T. & Kobayashi, T. Visible pulse compression to 4 fs by optical parametric amplification and programmable dispersion control. Opt. Lett. 27, 306–308 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Cerullo, G. et al. Few-optical-cycle light pulses with passive carrier-envelope phase stabilization. Laser Photonics Rev. 5, 323–351 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Rothhardt, J. et al. Octave-spanning OPCPA system delivering CEP-stable few-cycle pulses and 22 W of average power at 1 MHz repetition rate. Opt. Express 20, 10870–10878 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Leblanc, A. et al. High-field mid-infrared pulses derived from frequency domain optical parametric amplification. Opt. Lett. 45, 2267–2270 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Cox, J. A. et al. Pulse synthesis in the single-cycle regime from independent mode-locked lasers using attosecond-precision feedback. Opt. Lett. 37, 3579–3581 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Krauss, G. et al. Synthesis of a single cycle of light with compact erbium-doped fibre technology. Nat. Photonics 4, 33–36 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Manzoni, C. et al. Coherent synthesis of ultra-broadband optical parametric amplifiers. Opt. Lett. 37, 1880–1882 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Cirmi, G. et al. Optical waveform synthesis and its applications. Laser Photonics Rev. 17, 2200588 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Manzoni, C. et al. Coherent pulse synthesis: towards sub-cycle optical waveforms. Laser Photonics Rev. 9, 129–171 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Reichert, J. et al. Measuring the frequency of light with mode-locked lasers. Opt. Commun. 172, 59–68 (1999).

    Article 
    ADS 

    Google Scholar
     

  • Jones, D. J. et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 288, 635–639 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Telle, H. R. et al. Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation. Appl. Phys. B 69, 327–332 (1999).

    Article 
    ADS 

    Google Scholar
     

  • Lee, Y. S. et al. Novel method for carrier-envelope-phase stabilization of femtosecond laser pulses. Opt. Express 13, 2969–2976 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Rausch, S. et al. Few-cycle oscillator pulse train with constant carrier-envelope- phase and 65 as jitter. Opt. Express 17, 20282–20290 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Koke, S. et al. Direct frequency comb synthesis with arbitrary offset and shot-noise-limited phase noise. Nat. Photonics 4, 462–465 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Nakamura, K. et al. Offset-free all-fiber frequency comb with an acousto-optic modulator and two f–2f interferometers. Appl. Phys. Express 10, 072501 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Okubo, S. et al. Offset-free optical frequency comb self-referencing with an f-2f interferometer. Optica 5, 188–192 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Kakehata, M. et al. Single-shot measurement of carrier-envelope phase changes by spectral interferometry. Opt. Lett. 26, 1436–1438 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Shestaev, E. et al. Carrier-envelope offset stable, coherently combined ytterbium-doped fiber CPA delivering 1 kW of average power. Opt. Lett. 45, 6350–6353 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Fuji, T., Apolonski, A. & Krausz, F. Self-stabilization of carrier-envelope offset phase by use of difference-frequency generation. Opt. Lett. 29, 632–634 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Fuji, T. et al. Attosecond control of optical waveforms. N. J. Phys. 7, 116 (2005).

    Article 

    Google Scholar
     

  • Fuji, T. et al. Monolithic carrier-envelope phase-stabilization scheme. Opt. Lett. 30, 332–334 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Morgner, U. et al. Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime. Phys. Rev. Lett. 86, 5462–5465 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Ramond, T. M. et al. Phase-coherent link from optical to microwave frequencies by means of the broadband continuum from a 1-GHz Ti:sapphire femtosecond oscillator. Opt. Lett. 27, 1842–1844 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Hitachi, K. et al. Carrier-envelope offset locking with a 2f-to-3f self-referencing interferometer using a dual-pitch PPLN ridge waveguide. Opt. Express 22, 1629–1635 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Ranka, J. K., Windeler, R. S. & Stentz, A. J. Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm. Opt. Lett. 25, 25–27 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Vasilyev, S. et al. Octave-spanning Cr:ZnS femtosecond laser with intrinsic nonlinear interferometry. Optica 6, 126–127 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Steinleitner, P. et al. Single-cycle infrared waveform control. Nat. Photonics 16, 512–518 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Guo, C. et al. Single-shot, high-repetition rate carrier-envelope-phase detection of ultrashort laser pulses. Opt. Lett. 48, 5431–5434 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Osvay, K. et al. Bandwidth-independent linear method for detection of the carrier-envelope offset phase. Opt. Lett. 32, 3095–3097 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Fortier, T. M. et al. Carrier-envelope phase-controlled quantum interference of injected photocurrents in semiconductors. Phys. Rev. Lett. 92, 147403 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Roos, P. A. et al. Solid-state carrier-envelope phase stabilization via quantum interference control of injected photocurrents. Opt. Lett. 30, 735–737 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Apolonski, A. et al. Observation of light-phase-sensitive photoemission from a metal. Phys. Rev. Lett. 92, 073902 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Krüger, M., Schenk, M. & Hommelhoff, P. Attosecond control of electrons emitted from a nanoscale metal tip. Nature 475, 78–81 (2011).

    Article 

    Google Scholar
     

  • Piglosiewicz, B. et al. Carrier-envelope phase effects on the strong-field photoemission of electrons from metallic nanostructures. Nat. Photonics 8, 37–42 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Dietrich, P., Krausz, F. & Corkum, P. B. Determining the absolute carrier phase of a few-cycle laser pulse. Opt. Lett. 25, 16–18 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Schätzel, M. G. et al. Long-term stabilization of the carrier-envelope phase of few-cycle laser pulses. Appl. Phys. B 79, 1021–1025 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Kreß, M. et al. Determination of the carrier-envelope phase of few-cycle laser pulses with terahertz-emission spectroscopy. Nat. Phys. 2, 327–331 (2006).

    Article 

    Google Scholar
     

  • Wittmann, T. et al. Single-shot carrier–envelope phase measurement of few-cycle laser pulses. Nat. Phys. 5, 357–362 (2009).

    Article 

    Google Scholar
     

  • Debrah, D. A. et al. Direct insitu single-shot measurements of the absolute carrier-envelope phases of ultrashort pulses. Opt. Lett. 44, 3582–3585 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Kubullek, M. et al. Single-shot carrier–envelope-phase measurement in ambient air. Optica 7, 35–39 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Goulielmakis, E. et al. Direct measurement of light waves. Science 305, 1267–1269 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Schiffrin, A. et al. Optical-field-induced current in dielectrics. Nature 493, 70–74 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Paasch-Colberg, T. et al. Solid-state light-phase detector. Nat. Photonics 8, 214–218 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Keiber, S. et al. Electro-optic sampling of near-infrared waveforms. Nat. Photonics 10, 159–162 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Park, S. B. et al. Direct sampling of a light wave in air. Optica 5, 402–408 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Sederberg, S. et al. Attosecond optoelectronic field measurement in solids. Nat. Commun. 11, 430 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Korobenko, A. et al. Femtosecond streaking in ambient air. Optica 7, 1372–1376 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Zimin, D. et al. Petahertz-scale nonlinear photoconductive sampling in air. Optica 8, 586–590 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Altwaijry, N. et al. Sensitivity enhancement in photoconductive light field sampling. Adv. Opt. Mater. 12, 2302490 (2024).

    Article 

    Google Scholar
     

  • Rybka, T. et al. Sub-cycle optical phase control of nanotunnelling in the single-electron regime. Nat. Photonics 10, 667–670 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Putnam, W. P. et al. Optical-field-controlled photoemission from plasmonic nanoparticles. Nat. Phys. 13, 335–339 (2017).

    Article 

    Google Scholar
     

  • Bionta, M. R. et al. On-chip sampling of optical fields with attosecond resolution. Nat. Photonics 15, 456–460 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Yang, Y. J. et al. Light phase detection with on-chip petahertz electronic networks. Nat. Commun. 11, 3407 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Keathley, P. D. et al. Vanishing carrier-envelope-phase-sensitive response in optical-field photoemission from plasmonic nanoantennas. Nat. Phys. 15, 1128–1133 (2019).

    Article 

    Google Scholar
     

  • Liu, Y. Y. et al. Single-shot measurement of few-cycle optical waveforms on a chip. Nat. Photonics 16, 109–112 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Hanus, V. et al. Carrier-envelope phase on-chip scanner and control of laser beams. Nat. Commun. 14, 5068 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Ritzkowsky, F. et al. On-chip petahertz electronics for single-shot phase detection. Nat. Commun. 15, 10179 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Udem, T. et al. Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser. Phys. Rev. Lett. 82, 3568–3571 (1999).

    Article 
    ADS 

    Google Scholar
     

  • Kwong, K. F. et al. 400-Hz mechanical scanning optical delay line. Opt. Lett. 18, 558–560 (1993).

    Article 
    ADS 

    Google Scholar
     

  • Holman, K. W. et al. Intensity-related dynamics of femtosecond frequency combs. Opt. Lett. 28, 851–853 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Goldovsky, D., Jouravsky, V. & Pe’er, A. Simple and robust phase-locking of optical cavities with >200 KHz servo-bandwidth using a piezo-actuated mirror mounted in soft materials. Opt. Express 24, 28239–28246 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Nakamura, T. et al. Piezo-electric transducer actuated mirror with a servo bandwidth beyond 500 kHz. Opt. Express 28, 16118–16125 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Poppe, A. et al. Few-cycle optical waveform synthesis. Appl. Phys. B 72, 373–376 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Braje, D. A. et al. Astronomical spectrograph calibration with broad-spectrum frequency combs. Eur. Phys. J. D. 48, 57–66 (2008).

    Article 
    ADS 

    Google Scholar
     

  • McFerran, J. J. et al. Suppression of pump-induced frequency noise in fiber-laser frequency combs leading to sub-radian fceo phase excursions. Appl. Phys. B 86, 219–227 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Balčiūnas, T. et al. Carrier envelope phase stabilization of a Yb:KGW laser amplifier. Opt. Lett. 36, 3242–3244 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Rauschenberger, J. et al. Control of the frequency comb from a modelocked Erbium-doped fiber laser. Opt. Express 10, 1404–1410 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Seidel, M. et al. Carrier-envelope-phase stabilization via dual wavelength pumping. Opt. Lett. 41, 1853–1856 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Karlen, L. et al. Efficient carrier-envelope offset frequency stabilization through gain modulation via stimulated emission. Opt. Lett. 41, 376–379 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Xu, L. et al. Route to phase control of ultrashort light pulses. Opt. Lett. 21, 2008–2010 (1996).

    Article 
    ADS 

    Google Scholar
     

  • Endo, M., Shoji, T. D. & Schibli, T. R. Ultralow noise optical frequency combs. IEEE J. Sel. Top. Quantum Electron. 24, 1102413 (2018).

    Article 

    Google Scholar
     

  • Kowalczyk, M. et al. Ultra-CEP-stable single-cycle pulses at 2.2 µm. Optica 10, 801–811 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Lee, C. C. et al. Frequency comb stabilization with bandwidth beyond the limit of gain lifetime by an intracavity graphene electro-optic modulator. Opt. Lett. 37, 3084–3086 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Pronin, O. et al. High-power multi-megahertz source of waveform-stabilized few-cycle light. Nat. Commun. 6, 6988 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Hoffmann, M., Schilt, S. & Südmeyer, T. CEO stabilization of a femtosecond laser using a SESAM as fast opto-optical modulator. Opt. Express 21, 30054–30064 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Lücking, F. et al. Long-term carrier-envelope-phase-stable few-cycle pulses by use of the feed-forward method. Opt. Lett. 37, 2076–2078 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Lemons, R. et al. Carrier-envelope phase stabilization of an Er:Yb:glass laser via a feed-forward technique. Opt. Lett. 44, 5610–5613 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Hirschman, J. et al. Long-term hybrid stabilization of the carrier-envelope phase. Opt. Express 28, 34093–34103 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Baltuska, A. et al. Phase-controlled amplification of few-cycle laser pulses. IEEE J. Sel. Top. Quantum Electron. 9, 972–989 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Wang, H. et al. Coupling between energy and phase in hollow-core fiber based f-to-2f interferometers. Opt. Express 17, 12082–12089 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Wang, H. et al. Carrier–envelope phase stabilization of 5-fs, 0.5-mJ pulses from adaptive phase modulator. Appl. Phys. B 98, 291–294 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Moon, E. et al. Advances in carrier-envelope phase stabilization of grating-based chirped-pulse amplifiers. Laser Photonics Rev. 4, 160–177 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Chang, Z. H. Carrier-envelope phase shift caused by grating-based stretchers and compressors. Appl. Opt. 45, 8350–8353 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Tournois, P. Acousto-optic programmable dispersive filter for adaptive compensation of group delay time dispersion in laser systems. Opt. Commun. 140, 245–249 (1997).

    Article 
    ADS 

    Google Scholar
     

  • Canova, L. et al. Carrier-envelope phase stabilization and control using a transmission grating compressor and an AOPDF. Opt. Lett. 34, 1333–1335 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Crozatier, V., Forget, N. & Oksenhendler, T. Towards single shot carrier-envelope phase stabilization for multi kHz ultrafast amplifiers. In Proc. 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (IEEE, 2011).

  • Verluise, F. et al. Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping. Opt. Lett. 25, 575–577 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Gobert, O. et al. Carrier-envelope phase control using linear electro-optic effect. Opt. Express 19, 5410–5418 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Hergott, J. F. et al. Carrier-envelope phase stabilization of a 20 W, grating based, chirped-pulse amplified laser, using electro-optic effect in a LiNbO₃ crystal. Opt. Express 19, 19935–19941 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Natile, M. et al. CEP-stable high-energy ytterbium-doped fiber amplifier. Opt. Lett. 44, 3909–3912 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Balčiūnas, T. et al. Direct carrier-envelope phase control of an amplified laser system. Opt. Lett. 39, 1669–1672 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Baltuška, A., Fuji, T. & Kobayashi, T. Controlling the carrier-envelope phase of ultrashort light pulses with optical parametric amplifiers. Phys. Rev. Lett. 88, 133901 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Adachi, S., Kumbhakar, P. & Kobayashi, T. Quasi-monocyclic near-infrared pulses with a stabilized carrier-envelope phase characterized by noncollinear cross-correlation frequency-resolved optical gating. Opt. Lett. 29, 1150–1152 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Shan, B. & Chang, Z. H. Dramatic extension of the high-order harmonic cutoff by using a long-wavelength driving field. Phys. Rev. A 65, 011804 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Zhao, K. et al. Tailoring a 67 attosecond pulse through advantageous phase-mismatch. Opt. Lett. 37, 3891–3893 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Johnson, A. S. et al. High-flux soft x-ray harmonic generation from ionization-shaped few-cycle laser pulses. Sci. Adv. 4, eaar3761 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Teichmann, S. M. et al. 0.5-keV Soft X-ray attosecond continua. Nat. Commun. 7, 11493 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Colosimo, P. et al. Scaling strong-field interactions towards the classical limit. Nat. Phys. 4, 386–389 (2008).

    Article 

    Google Scholar
     

  • Tate, J. et al. Scaling of wave-packet dynamics in an intense midinfrared field. Phys. Rev. Lett. 98, 013901 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Mairesse, Y. et al. Attosecond synchronization of high-harmonic soft x-rays. Science 302, 1540–1543 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Danielius, R. et al. Traveling-wave parametric generation of widely tunable, highly coherent femtosecond light pulses. J. Opt. Soc. Am. B 10, 2222–2232 (1993).

    Article 
    ADS 

    Google Scholar
     

  • Cerullo, G. & De Silvestri, S. Ultrafast optical parametric amplifiers. Rev. Sci. Instrum. 74, 1–18 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Manzoni, C. et al. Generation of high-energy self-phase-stabilized pulses by difference-frequency generation followed by optical parametric amplification. Opt. Lett. 31, 963–965 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Hauri, C. P. et al. Intense self-compressed, self-phase-stabilized few-cycle pulses at 2 μm from an optical filament. Opt. Lett. 32, 868–870 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Vozzi, C. et al. Characterization of a high-energy self-phase-stabilized near-infrared parametric source. J. Opt. Soc. Am. B 25, B112–B117 (2008).

    Article 

    Google Scholar
     

  • Giguère, M. et al. Pulse compression of submillijoule few-optical-cycle infrared laser pulses using chirped mirrors. Opt. Lett. 34, 1894–1896 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Ishii, N. et al. Generation of ultrashort intense optical pulses at 1.6 μm from a bismuth triborate-based optical parametric chirped pulse amplifier with carrier-envelope phase stabilization. J. Opt. 17, 094001 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Seeger, M. F. et al. 49 W carrier-envelope-phase-stable few-cycle 2.1 µm OPCPA at 10 kHz. Opt. Express 31, 24821–24834 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Fu, Y. X. et al. TW-scale mid-infrared pulses near 3.3 μm directly generated by dual-chirped optical parametric amplification. Appl. Phys. Lett. 112, 241105 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Ishii, N. et al. Sub-two-cycle, carrier-envelope phase-stable, intense optical pulses at 1.6 μm from a BiB3O6 optical parametric chirped-pulse amplifier. Opt. Lett. 37, 4182–4184 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Chen, C. T. et al. New nonlinear-optical crystal: LiB3O5. J. Opt. Soc. Am. B 6, 616–621 (1989).

    Article 
    ADS 

    Google Scholar
     

  • Zeng, X. M. et al. Multi-petawatt laser facility fully based on optical parametric chirsped-pulse amplification. Opt. Lett. 42, 2014–2017 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Chen, C. T. et al. A new-type ultraviolet SHG crystal—β-BaB2O4. Sci. China Ser. B Chem. Biol. Agric. Med. Earth Sci. 28, 235–243 (1985).


    Google Scholar
     

  • Hong, K. H. et al. High-energy, phase-stable, ultrabroadband kHz OPCPA at 21 μm pumped by a picosecond cryogenic Yb:YAG laser. Opt. Express 19, 15538–15548 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Andriukaitis, G. et al. 90 GW peak power few-cycle mid-infrared pulses from an optical parametric amplifier. Opt. Lett. 36, 2755–2757 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Fan, G. et al. Hollow-core-waveguide compression of multi-millijoule CEP-stable 3.2 μm pulses. Optica 3, 1308–1311 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Chen, Y. et al. Generation of high beam quality, high-energy and broadband tunable mid-infrared pulse from a KTA optical parametric amplifier. Opt. Commun. 365, 7–13 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Thiré, N. et al. Highly stable, 15 W, few-cycle, 65 mrad CEP-noise mid-IR OPCPA for statistical physics. Opt. Express 26, 26907–26915 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Li, J. et al. 53-attosecond X-ray pulses reach the carbon K-edge. Nat. Commun. 8, 186 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Boyd, G. D., Buehler, E. & Storz, F. G. Linear and nonlinear optical properties of ZnGeP2 and CdSe. Appl. Phys. Lett. 18, 301–304 (1971).

    Article 
    ADS 

    Google Scholar
     

  • Sanchez, D. et al. 7 μm, ultrafast, sub-millijoule-level mid-infrared optical parametric chirped pulse amplifier pumped at 2 μm. Optica 3, 147–150 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Liang, H. K. et al. Octave-spanning 6-µm OPA pumped by 2.1-µm OPCPA. In Proc. High-Brightness Sources and Light-Driven Interactions (Optica Publishing Group, 2016).

  • Von Grafenstein, L. et al. 5 μm few-cycle pulses with multi-gigawatt peak power at a 1 kHz repetition rate. Opt. Lett. 42, 3796–3799 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Mirov, S. B. et al. Frontiers of mid-IR lasers based on transition metal doped chalcogenides. IEEE J. Sel. Top. Quantum Electron. 24, 1601829 (2018).

    Article 

    Google Scholar
     

  • Schunemann, P. G. et al. Advances in nonlinear optical crystals for mid-infrared coherent sources. J. Opt. Soc. Am. B 33, D36–D43 (2016).

    Article 

    Google Scholar
     

  • Petrov, V. Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals. Prog. Quantum Electron. 42, 1–106 (2015).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Vaupel, A. et al. Concepts, performance review, and prospects of table-top, few-cycle optical parametric chirped-pulse amplification. Opt. Eng. 53, 051507 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Hemmer, M. et al. 2-μm wavelength, high-energy Ho:YLF chirped-pulse amplifier for mid-infrared OPCPA. Opt. Lett. 40, 451–454 (2015).

    Article 
    ADS 

    Google Scholar
     

  • von Grafenstein, L. et al. Ho:YLF chirped pulse amplification at kilohertz repetition rates – 4.3 ps pulses at 2 μm with GW peak power. Opt. Lett. 41, 4668–4671 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Isaenko, L. et al. Growth and properties of LiGaX2 (X = S, Se, Te) single crystals for nonlinear optical applications in the mid-IR. Cryst. Res. Technol. 38, 379–387 (2003).

    Article 

    Google Scholar
     

  • Qu, S. Z. et al. 9 μm few-cycle optical parametric chirped-pulse amplifier based on LiGaS2. Opt. Lett. 44, 2422–2425 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Wilson, D. J. et al. An intense, few-cycle source in the long-wave infrared. Sci. Rep. 9, 6002 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Rotermund, F., Petrov, V. & Noack, F. Difference-frequency generation of intense femtosecond pulses in the mid-IR (4-12 μm) using HgGa2S4 and AgGaS2. Opt. Commun. 185, 177–183 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Gu, X. B. et al. Difference-frequency generation of 0.2-mJ 3-cycle 9-µm pulses from two 1-kHz multicycle OPCPAs. Laser Photonics Rev. 19, 2400507 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Kaindl, R. A. et al. Generation, shaping, and characterization of intense femtosecond pulses tunable from 3 to 20 µm. J. Opt. Soc. Am. B 17, 2086–2094 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Junginger, F. et al. Single-cycle multiterahertz transients with peak fields above 10 MV/cm. Opt. Lett. 35, 2645–2647 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Babzien, M., Pogorelsky, I. V. & Polanskiy, M. Solid-state seeding of a high power picosecond carbon dioxide laser. AIP Conf. Proc. 1777, 110001 (2016).

    Article 

    Google Scholar
     

  • Duda, M. et al. 10-µJ few-cycle 12-µm source based on difference-frequency generation driven by a 1-kHz mid-wave infrared OPCPA. Opt. Lett. 47, 2891–2894 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Budriūnas, R. et al. Long seed, short pump: converting Yb-doped laser radiation to multi-µJ few-cycle pulses tunable through 2.5-15 µm. Opt. Express 30, 13009–13023 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Novák, O. et al. Femtosecond 8.5 μm source based on intrapulse difference-frequency generation of 2.1 μm pulses. Opt. Lett. 43, 1335–1338 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Pupeza, I. et al. High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate. Nat. Photonics 9, 721–724 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Reimann, K. et al. Direct field-resolved detection of terahertz transients with amplitudes of megavolts per centimeter. Opt. Lett. 28, 471–473 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Liu, K. et al. Microjoule sub-two-cycle mid-infrared intrapulse-DFG Driven by 3-μm OPCPA. IEEE Photonics Technol. Lett. 31, 1741–1744 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Bournet, Q. et al. Inline amplification of mid-infrared intrapulse difference frequency generation. Opt. Lett. 47, 4885–4888 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Liu, K. et al. High-energy mid-infrared intrapulse difference-frequency generation with 5.3% conversion efficiency driven at 3 µm. Opt. Express 27, 37706–37713 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Eickemeyer, F. et al. Controlled shaping of ultrafast electric field transients in the mid-infrared spectral range. Opt. Lett. 25, 1472–1474 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Witte, T., Kompa, K. L. & Motzkus, M. Femtosecond pulse shaping in the mid infrared by difference-frequency mixing. Appl. Phys. B 76, 467–471 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Krogen, P. et al. Generation and multi-octave shaping of mid-infrared intense single-cycle pulses. Nat. Photonics 11, 222–226 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Bock, M. et al. Pulse shaping in a midwave-IR OPCPA for multi-µJ few-cycle pulse generation at 12 µm via DFG. Opt. Express 31, 14096–14108 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Ren, X. M. et al. Generation of 1 kHz, 2.3 mJ, 88 fs, 2.5 μm pulses from a Cr2+:ZnSe chirped pulse amplifier. Opt. Lett. 43, 3381–3384 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Leshchenko, V. E. et al. High-power few-cycle Cr:ZnSe mid-infrared source for attosecond soft x-ray physics. Optica 7, 981–988 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Wu, Y. et al. Generation of few-cycle multi-millijoule 2.5 μm pulses from a single-stage Cr2+:ZnSe amplifier. Sci. Rep. 10, 7775 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Migal, E. et al. 3.5-mJ 150-fs Fe:ZnSe hybrid mid-IR femtosecond laser at 4.4 μm for driving extreme nonlinear optics. Opt. Lett. 44, 2550–2553 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Slobodchikov, E., Chieffo, L. R. & Wall, K. F. High peak power ultrafast Cr:ZnSe oscillator and power amplifier. In Proc. SPIE 9726, Solid State Lasers XXV: Technology and Devices 972603 (SPIE, 2016).

  • Vasilyev, S. et al. 1.5-mJ Cr:ZnSe chirped pulse amplifier seeded by a Kerr-Lens mode-locked Cr:ZnS oscillator. In Proc. Laser Congress (Optica Publishing Group, 2019).

  • Page, R. H. et al. Demonstrations of diode – pumped and grating – tuned ZnSe:Cr2+ lasers. In Proc. Advanced Solid State Lasers (Optica Publishing Group, 1997).

  • Slobodtchikov, E. U. & Moulton, P. F. Progress in ultrafast Cr:ZnSe lasers. In Proc. Advanced Solid-State Photonics (Optica Publishing Group, 2012).

  • Nagl, N. et al. Directly diode-pumped, Kerr-lens mode-locked, few-cycle Cr:ZnSe oscillator. Opt. Express 27, 24445–24454 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Qu, S. Z. et al. Directly diode-pumped femtosecond Cr:ZnS amplifier with ultra-low intensity noise. Opt. Lett. 47, 6217–6220 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Sorokina, I. T., Sorokin, E. & Carrig, T. J. Femtosecond pulse generation from a SESAM mode-locked Cr:ZnSe laser. In Proc. 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference1–2 (IEEE, 2006).

  • Vasilyev, S. et al. Mid-IR Kerr-lens mode-locked polycrystalline Cr2+:ZnS lasers. In Proc. SPIE 9835, Ultrafast Bandgap Photonics (SPIE, 2016).

  • Vasilyev, S. et al. Kerr-lens mode-locked Cr:ZnS oscillator reaches the spectral span of an optical octave. Opt. Express 29, 2458–2465 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Vasilyev, S. et al. Multi-Watt mid-IR femtosecond polycrystalline Cr2+:ZnS and Cr2+:ZnSe laser amplifiers with the spectrum spanning 20-26 µm. Opt. Express 24, 1616–1623 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Vasilyev, S. et al. Three optical cycle mid-IR Kerr-lens mode-locked polycrystalline Cr2+:ZnS laser. Opt. Lett. 40, 5054–5057 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Vasilyev, S. et al. Ultrafast middle-IR lasers and amplifiers based on polycrystalline Cr:ZnS and Cr:ZnSe. Opt. Mater. Express 7, 2636–2650 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Vasilyev, S. et al. Middle-IR frequency comb based on Cr:ZnS laser. Opt. Express 27, 35079–35087 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Vasilyev, S. et al. Kerr-Lens mode-locked middle IR polycrystalline Cr:ZnS laser with a repetition rate 1.2 GHz. In Proc. Advanced Solid State Lasers (Optica Publishing Group, 2016).

  • Barh, A. et al. High-power low-noise 2-GHz femtosecond laser oscillator at 2.4 µm. Opt. Express 30, 5019–5025 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Vasilyev, S. et al. 27 Watt middle-IR femtosecond laser system at 2.4 μm. In Proc. Advanced Solid State Lasers (Optica Publishing Group, 2018).

  • Evans, J. W., Berry, P. A. & Schepler, K. L. 840 mW continuous-wave Fe:ZnSe laser operating at 4140 nm. Opt. Lett. 37, 5021–5023 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Evans, J. W., Sanamyan, T. & Berry, P. A. A continuous wave Fe:ZnSe laser pumped by efficient Er:Y2O3 laser. In Proc. SPIE 9342, Solid State Lasers XXIV: Technology and Devices (SPIE, 2015).

  • Mirov, S. B. et al. Progress in mid-IR lasers based on Cr and Fe-doped II-VI chalcogenides. IEEE J. Sel. Top. Quantum Electron. 21, 292–310 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Martyshkin, D. V. et al. High power (9.2 W) CW 4.15 µm Fe:ZnSe laser. In Proc. 2017 Conference on Lasers and Electro-Optics (IEEE, 2014).

  • Pushkin, A. V. et al. Compact, highly efficient, 2.1-W continuous-wave mid-infrared Fe:ZnSe coherent source, pumped by an Er:ZBLAN fiber laser. Opt. Lett. 43, 5941–5944 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Pushkin, A. V. et al. Femtosecond graphene mode-locked Fe:ZnSe laser at 4.4 µm. Opt. Lett. 45, 738–741 (2020).

    Article 
    ADS 

    Google Scholar
     

  • L’Huillier, A. et al. Applications of high-order harmonics. Eur. Phys. J. D At., Mol., Opt. Plasma Phys. 26, 91–98 (2003).


    Google Scholar
     

  • Schultze, M. et al. State-of-the-art attosecond metrology. J. Electron Spectrosc. Relat. Phenom. 184, 68–77 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Brunner, C. et al. Deep learning in attosecond metrology. Opt. Express 30, 15669–15684 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Guan, F. Y. et al. AI-enabled universal image-spectrum fusion spectroscopy based on self-supervised plasma modeling. Adv. Photonics Nexus 3, 066014 (2024).

    Article 

    Google Scholar
     

  • Zhang, D. et al. A plasma-image-assisted method for matrix effect correction in laser-induced breakdown spectroscopy. Anal. Chim. Acta 1107, 14–22 (2020).

    Article 

    Google Scholar
     

  • Mikaelsson, S. et al. A high-repetition rate attosecond light source for time-resolved coincidence spectroscopy. Nanophotonics 10, 117–128 (2020).

    Article 

    Google Scholar
     

  • Buss, J. H. et al. A setup for extreme-ultraviolet ultrafast angle-resolved photoelectron spectroscopy at 50-kHz repetition rate. Rev. Sci. Instrum. 90, 023105 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Ye, P. et al. High-flux 100 kHz attosecond pulse source driven by a high-average power annular laser beam. Ultrafast Sci. 2022, 9823783 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Pupeza, I. et al. Extreme-ultraviolet frequency combs for precision metrology and attosecond science. Nat. Photonics 15, 175–186 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Jones, R. J. et al. Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity. Phys. Rev. Lett. 94, 193201 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Gohle, C. et al. A frequency comb in the extreme ultraviolet. Nature 436, 234–237 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Cingöz, A. et al. Direct frequency comb spectroscopy in the extreme ultraviolet. Nature 482, 68–71 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Ozawa, A. et al. High harmonic frequency combs for high resolution spectroscopy. Phys. Rev. Lett. 100, 253901 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Diddams, S. A., Vahala, K. & Udem, T. Optical frequency combs: coherently uniting the electromagnetic spectrum. Science 369, eaay3676 (2020).

    Article 

    Google Scholar
     

  • Zhang, C. K. et al. Frequency ratio of the 229mTh nuclear isomeric transition and the 87Sr atomic clock. Nature 633, 63–70 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Holzberger, S. et al. Femtosecond enhancement cavities in the nonlinear regime. Phys. Rev. Lett. 115, 023902 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Ozawa, A. et al. High average power coherent vuv generation at 10 MHz repetition frequency by intracavity high harmonic generation. Opt. Express 23, 15107–15118 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Carstens, H. et al. High-harmonic generation at 250 MHz with photon energies exceeding 100 eV. Optica 3, 366–369 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Pupeza, I. Passive Optical Resonators for Next-Generation Attosecond Metrology (Springer, 2022).

  • Saule, T. et al. Cumulative plasma effects in cavity-enhanced high-order harmonic generation in gases. APL Photonics 3, 101301 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Hädrich, S. et al. Exploring new avenues in high repetition rate table-top coherent extreme ultraviolet sources. Light Sci. Appl. 4, e320–e320 (2015).

    Article 

    Google Scholar
     

  • Allison, T. K. et al. Extreme nonlinear optics in a femtosecond enhancement cavity. Phys. Rev. Lett. 107, 183903 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Yost, D. C. et al. Power optimization of XUV frequency combs for spectroscopy applications [Invited]. Opt. Express 19, 23483–23493 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Högner, M., Tosa, V. & Pupeza, I. Generation of isolated attosecond pulses with enhancement cavities—a theoretical study. N. J. Phys. 19, 033040 (2017).

    Article 

    Google Scholar
     

  • Högner, M. et al. Tailoring the transverse mode of a high-finesse optical resonator with stepped mirrors. J. Opt. 20, 024003 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Högner, M., Saule, T. & Pupeza, I. Efficiency of cavity-enhanced high harmonic generation with geometric output coupling. Journal of Physics B: Atomic. J. Phys. B At. Mol. Opt. Phys. 52, 075401 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Sabbar, M. et al. Combining attosecond XUV pulses with coincidence spectroscopy. Rev. Sci. Instrum. 85, 103113 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Gademann, G. et al. Carrier-envelope phase stabilization of a terawatt level chirped pulse amplifier for generation of intense isolated attosecond pulses. Opt. Express 19, 24922–24932 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Leuthold, J., Koos, C. & Freude, W. Nonlinear silicon photonics. Nat. Photonics 4, 535–544 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Zhong, S. Y. et al. Characterizing 86-attosecond isolated pulses based on amplitude gating of high harmonic generation [Invited]. Chin. Opt. Lett. 21, 113201 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Wang, X. W. et al. Generation of 88 as isolated attosecond pulses with double optical gating. Chin. Phys. Lett. 37, 023201 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Krebs, M. et al. Towards isolated attosecond pulses at megahertz repetition rates. Nat. Photonics 7, 555–559 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Furch, F. J. et al. CEP-stable few-cycle pulses with more than 190 μJ of energy at 100 kHz from a noncollinear optical parametric amplifier. Opt. Lett. 42, 2495–2498 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Witting, T. et al. Generation and characterization of isolated attosecond pulses at 100 kHz repetition rate. Optica 9, 145–151 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Ye, P. et al. Attosecond pulse generation at ELI-ALPS 100 kHz repetition rate beamline. J. Phys. B At. Mol. Opt. Phys. 53, 154004 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Emaury, F. et al. Compact extreme ultraviolet source at megahertz pulse repetition rate with a low-noise ultrafast thin-disk laser oscillator. Optica 2, 980–984 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Liu, H. Y. et al. High-power 100 W Kerr-lens mode-locked ring-cavity femtosecond Yb:YAG thin-disk oscillator. Opt. Lett. 49, 1157–1160 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Drs, J. et al. Ultrafast thin-disk laser oscillators as driving sources for high harmonic generation. EPJ Web Conf. 287, 08007 (2023).

    Article 

    Google Scholar
     

  • Fischer, J. et al. Intra-oscillator high harmonic generation in a thin-disk laser operating in the 100-fs regime. Opt. Express 29, 5833–5839 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, J. W. et al. Multi-mW, few-cycle mid-infrared continuum spanning from 500 to 2250 cm−1. Light Sci. Appl. 7, 17180–17180 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, J. W. et al. Distributed Kerr Lens mode-locked Yb:YAG thin-disk oscillator. Ultrafast Sci. 2022, 9837892 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Yang, T. T. et al. 0.5 GHz femtosecond Yb:YAG thin-disk oscillator. Opt. Lett. 50, 2235–2238 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, J. W., Mak, K. F. & Pronin, O. Kerr-Lens mode-locked 2-μm thin-disk lasers. IEEE J. Sel. Top. Quantum Electron. 24, 1102111 (2018).

    Article 

    Google Scholar
     

  • Labaye, F. et al. Extreme ultraviolet light source at a megahertz repetition rate based on high-harmonic generation inside a mode-locked thin-disk laser oscillator. Opt. Lett. 42, 5170–5173 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Vampa, G. et al. Characterization of high-harmonic emission from ZnO up to 11 eV pumped with a Cr:ZnS high-repetition-rate source. Opt. Lett. 44, 259–262 (2019).

    Article 
    ADS 

    Google Scholar
     

  • You, Y. S., Reis, D. A. & Ghimire, S. Anisotropic high-harmonic generation in bulk crystals. Nat. Phys. 13, 345–349 (2017).

    Article 

    Google Scholar
     

  • Lee, K. F. et al. Harmonic generation in solids with direct fiber laser pumping. Opt. Lett. 42, 1113–1116 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Bagnoud, V. et al. 5Hz, >250mJ optical parametric chirped-pulse amplifier at 1053nm. Opt. Lett. 30, 1843–1845 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Müller, M. et al. Multipass cell for high-power few-cycle compression. Opt. Lett. 46, 2678–2681 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Losev, L. et al. Compression of few-microjoule femtosecond pulses in a hollow-core revolver fiber. Fibers 11, 22 (2023).

    Article 

    Google Scholar
     

  • Osolodkov, M. et al. Generation and characterisation of few-pulse attosecond pulse trains at 100 kHz repetition rate. Journal of Physics B: Atomic. Mol. Opt. Phys. 53, 194003 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Feng, X. M. et al. Generation of isolated attosecond pulses with 20 to 28 femtosecond lasers. Phys. Rev. Lett. 103, 183901 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Fabris, D. et al. Synchronized pulses generated at 20 eV and 90 eV for attosecond pump–probe experiments. Nat. Photonics 9, 383–387 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Timmers, H. et al. Polarization-assisted amplitude gating as a route to tunable, high-contrast attosecond pulses. Optica 3, 707–710 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Cousin, S. L. et al. Attosecond streaking in the water window: a new regime of attosecond pulse characterization. Phys. Rev. X 7, 041030 (2017).


    Google Scholar
     

  • Li, J. et al. Double optical gating for generating high flux isolated attosecond pulses in the soft X-ray regime. Opt. Express 27, 30280–30286 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Rossi, G. M. et al. Sub-cycle millijoule-level parametric waveform synthesizer for attosecond science. Nat. Photonics 14, 629–635 (2020).

    Article 
    ADS 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *